11 research outputs found

    Multi-dimensional urban sensing in sparse mobile crowdsensing

    Get PDF
    International audienceSparse mobile crowdsensing (MCS) is a promising paradigm for the large-scale urban sensing, which allows us to collect data from only a few areas (cell selection) and infer the data of other areas (data inference). It can significantly reduce the sensing cost while ensuring high data quality. Recently, large urban sensing systems often require multiple types of sensing data (e.g., publish two tasks on temperature and humidity respectively) to form a multi-dimensional urban sensing map. These multiple types of sensing data hold some inherent correlations, which can be leveraged to further reduce the sensing cost and improve the accuracy of the inferred results. In this paper, we study the multi-dimensional urban sensing in sparse MCS to jointly address the data inference and cell selection for multi-task scenarios. We exploit the intra-and inter-task correlations in data inference to deduce the data of the unsensed cells through the multi-task compressive sensing and then learn and select the most effective cell, task pairs by using reinforcement learning. To effectively capture the intra-and inter-task correlations in cell selection, we design a network structure with multiple branches, where branches extract the intra-task correlations for each task, respectively, and then catenates the results from all branches to capture the inter-task correlations among the multiple tasks. In addition, we present a two-stage online framework for reinforcement learning in practical use, including training and running phases. The extensive experiments have been conducted on two real-world urban sensing datasets, each with two types of sensing data, which verify the effectiveness of our proposed algorithms on multi-dimensional urban sensing and achieve better performances than the state-of-the-art mechanisms

    A Data Fusion CANDECOMP-PARAFAC Method for Interval-wise Missing Network Volume Imputation

    Get PDF
    Traffic missing data imputation is a fundamental demand and crucial application for real-world intelligent transportation systems. The wide imputation methods in different missing patterns have demonstrated the superiority of tensor learning by effectively characterizing complex spatiotemporal correlations. However, interval-wise missing volume scenarios remain a challenging topic, in particular for long-term continuous missing and high-dimensional data with complex missing mechanisms and patterns. In this paper, we propose a customized tensor decomposition framework, named the data fusion CANDECOMP/PARAFAC (DFCP) tensor decomposition, to combine vehicle license plate recognition (LPR) data and cellphone location (CL) data for the interval-wise missing volume imputation on urban networks. Benefiting from the unique advantages of CL data in the wide spatiotemporal coverage and correlates highly with real-world traffic states, it is fused into vehicle license plate recognition (LPR) data imputation. They are regarded as data types dimension, combined with other dimensions (different segments, time, days), we innovatively design a 4-way low-n-rank tensor decomposition for data reconstruction. Furthermore, to deal with the diverse disturbances in different data dimensions, we derive a regularization penalty coefficient in data imputation. Different from existing regularization schemes, we further introduce Bayesian optimization (BO) to enhance the performance in the non-convexity of the objective function in our regularized hyperparametric solutions during tensor decomposition. Numerical experiments highlight that our proposed method, combining CL and LPR data, significantly outperforms the imputation method using LPR data only. And a sensitivity analysis with varying missing length and rate scenarios demonstrates the robustness of model performance

    Machine Learning Approaches for Traffic Flow Forecasting

    Get PDF
    Intelligent Transport Systems (ITS) as a field has emerged quite rapidly in the recent years. A competitive solution coupled with big data gathered for ITS applications needs the latest AI to drive the ITS for the smart and effective public transport planning and management. Although there is a strong need for ITS applications like Advanced Route Planning (ARP) and Traffic Control Systems (TCS) to take the charge and require the minimum of possible human interventions. This thesis develops the models that can predict the traffic link flows on a junction level such as road traffic flows for a freeway or highway road for all traffic conditions. The research first reviews the state-of-the-art time series data prediction techniques with a deep focus in the field of transport Engineering along with the existing statistical and machine leaning methods and their applications for the freeway traffic flow prediction. This review setup a firm work focussed on the view point to look for the superiority in term of prediction performance of individual statistical or machine learning models over another. A detailed theoretical attention has been given, to learn the structure and working of individual chosen prediction models, in relation to the traffic flow data. In modelling the traffic flows from the real-world Highway England (HE) gathered dataset, a traffic flow objective function for highway road prediction models is proposed in a 3-stage framework including the topological breakdown of traffic network into virtual patches, further into nodes and to the basic links flow profiles behaviour estimations. The proposed objective function is tested with ten different prediction models including the statistical, shallow and deep learning constructed hybrid models for bi-directional links flow prediction methods. The effectiveness of the proposed objective function greatly enhances the accuracy of traffic flow prediction, regardless of the machine learning model used. The proposed prediction objective function base framework gives a new approach to model the traffic network to better understand the unknown traffic flow waves and the resulting congestions caused on a junction level. In addition, the results of applied Machine Learning models indicate that RNN variant LSTMs based models in conjunction with neural networks and Deep CNNs, when applied through the proposed objective function, outperforms other chosen machine learning methods for link flow predictions. The experimentation based practical findings reveal that to arrive at an efficient, robust, offline and accurate prediction model apart from feeding the ML mode with the correct representation of the network data, attention should be paid to the deep learning model structure, data pre-processing (i.e. normalisation) and the error matrices used for data behavioural learning. The proposed framework, in future can be utilised to address one of the main aims of the smart transport systems i.e. to reduce the error rates in network wide congestion predictions and the inflicted general traffic travel time delays in real-time

    Simulation and Learning for Urban Mobility: City-scale Traffic Reconstruction and Autonomous Driving

    Get PDF
    Traffic congestion has become one of the most critical issues worldwide. The costs due to traffic gridlock and jams are approximately $160 billion in the United States, more than ÂŁ13 billion in the United Kingdom, and over one trillion dollars across the globe annually. As more metropolitan areas will experience increasingly severe traffic conditions, the ability to analyze, understand, and improve traffic dynamics becomes critical. This dissertation is an effort towards achieving such an ability. I propose various techniques combining simulation and machine learning to tackle the problem of traffic from two perspectives: city-scale traffic reconstruction and autonomous driving. Traffic, by its definition, appears in an aggregate form. In order to study it, we have to take a holistic approach. I address the problem of efficient and accurate estimation and reconstruction of city-scale traffic. The reconstructed traffic can be used to analyze congestion causes, identify network bottlenecks, and experiment with novel transport policies. City-scale traffic estimation and reconstruction have proven to be challenging for two particular reasons: first, traffic conditions that depend on individual drivers are intrinsically stochastic; second, the availability and quality of traffic data are limited. Traditional traffic monitoring systems that exist on highways and major roads can not produce sufficient data to recover traffic at scale. GPS data, in contrast, provide much broader coverage of a city thus are more promising sources for traffic estimation and reconstruction. However, GPS data are limited by their spatial-temporal sparsity in practice. I develop a framework to statically estimate and dynamically reconstruct traffic over a city-scale road network by addressing the limitations of GPS data. Traffic is also formed of individual vehicles propagating through space and time. If we can improve the efficiency of them, collectively, we can improve traffic dynamics as a whole. Recent advancements in automation and its implication for improving the safety and efficiency of the traffic system have prompted widespread research of autonomous driving. While exciting, autonomous driving is a complex task, consider the dynamics of an environment and the lack of accurate descriptions of a desired driving behavior. Learning a robust control policy for driving remains challenging as it requires an effective policy architecture, an efficient learning mechanism, and substantial training data covering a variety of scenarios, including rare cases such as accidents. I develop a framework, named ADAPS (Autonomous Driving via Principled Simulations), for producing robust control policies for autonomous driving. ADAPS consists of two simulation platforms which are used to generate and analyze simulated accidents while automatically generating labeled training data, and a hierarchical control policy which takes into account the features of driving behaviors and road conditions. ADAPS also represents a more efficient online learning mechanism compared to previous techniques, in which the number of iterations required to learn a robust control policy is reduced.Doctor of Philosoph
    corecore