513 research outputs found

    A Comprehensive Framework for Fair and Efficient Benchmarking of Hardware Implementations of Lightweight Cryptography

    Get PDF
    In this paper, we propose a comprehensive framework for fair and efficient benchmarking of hardware implementations of lightweight cryptography (LWC). Our framework is centered around the hardware API (Application Programming Interface) for the implementations of lightweight authenticated ciphers, hash functions, and cores combining both functionalities. The major parts of our API include the minimum compliance criteria, interface, and communication protocol supported by the LWC core. The proposed API is intended to meet the requirements of all candidates submitted to the NIST Lightweight Cryptography standardization process, as well as all CAESAR candidates and current authenticated cipher and hash function standards. In order to speed-up the development of hardware implementations compliant with this API, we are making available the LWC Development Package and the corresponding Implementer’s Guide. Equipped with these resources, hardware designers can focus on implementing only a core functionality of a given algorithm. The development package facilitates the communication with external modules, full verification of the LWC core using simulation, and generation of optimized results. The proposed API for lightweight cryptography is a superset of the CAESAR Hardware API, endorsed by the organizers of the CAESAR competition, which was successfully used in the development of over 50 implementations of Round 2 and Round 3 CAESAR candidates. The primary extensions include support for optional hash functionality and the development of cores resistant against side-channel attacks. Similarly, the LWC Development Package is a superset of the part of the CAESAR Development Package responsible for support of Use Case 1 (lightweight) CAESAR candidates. The primary extensions include support for hash functionality, increasing the flexibility of the code shared among all candidates, as well as extended support for the detection of errors preventing the correct operation of cores during experimental testing. Overall, our framework supports (a) fair ranking of candidates in the NIST LWC standardization process from the point of view of their efficiency in hardware before and after the implementation of countermeasures against side-channel attacks, (b) ability to perform benchmarking within the limited time devoted to Round2 and any subsequent rounds of the NIST LWC standardization process, (c) compatibility among implementations of the same algorithm by different designers and (d) fast deployment of the best algorithms in real-life applications

    Triathlon of Lightweight Block Ciphers for the Internet of Things

    Get PDF
    In this paper, we introduce a framework for the benchmarking of lightweight block ciphers on a multitude of embedded platforms. Our framework is able to evaluate the execution time, RAM footprint, as well as binary code size, and allows one to define a custom "figure of merit" according to which all evaluated candidates can be ranked. We used the framework to benchmark implementations of 19 lightweight ciphers, namely AES, Chaskey, Fantomas, HIGHT, LBlock, LEA, LED, Piccolo, PRESENT, PRIDE, PRINCE, RC5, RECTANGLE, RoadRunneR, Robin, Simon, SPARX, Speck, and TWINE, on three microcontroller platforms: 8-bit AVR, 16-bit MSP430, and 32-bit ARM. Our results bring some new insights into the question of how well these lightweight ciphers are suited to secure the Internet of things. The benchmarking framework provides cipher designers with an easy-to-use tool to compare new algorithms with the state of the art and allows standardization organizations to conduct a fair and consistent evaluation of a large number of candidates

    Triathlon of Lightweight Block Ciphers for the Internet of Things

    Get PDF
    In this paper we introduce a framework for the benchmarking of lightweight block ciphers on a multitude of embedded platforms. Our framework is able to evaluate the execution time, RAM footprint, as well as binary code size, and allows one to define a custom figure of merit according to which all evaluated candidates can be ranked. We used the framework to benchmark implementations of 19 lightweight ciphers, namely AES, Chaskey, Fantomas, HIGHT, LBlock, LEA, LED, Piccolo, PRESENT, PRIDE, PRINCE, RC5, RECTANGLE, RoadRunneR, Robin, Simon, SPARX, Speck, and TWINE, on three microcontroller platforms: 8-bit AVR, 16-bit MSP430, and 32-bit ARM. Our results bring some new insights to the question of how well these lightweight ciphers are suited to secure the Internet of Things (IoT). The benchmarking framework provides cipher designers with an easy-to-use tool to compare new algorithms with the state-of-the-art and allows standardization organizations to conduct a fair and consistent evaluation of a large number of candidates

    Efficient and Secure Implementations of Lightweight Symmetric Cryptographic Primitives

    Get PDF
    This thesis is devoted to efficient and secure implementations of lightweight symmetric cryptographic primitives for resource-constrained devices such as wireless sensors and actuators that are typically deployed in remote locations. In this setting, cryptographic algorithms must consume few computational resources and withstand a large variety of attacks, including side-channel attacks. The first part of this thesis is concerned with efficient software implementations of lightweight symmetric algorithms on 8, 16, and 32-bit microcontrollers. A first contribution of this part is the development of FELICS, an open-source benchmarking framework that facilitates the extraction of comparative performance figures from implementations of lightweight ciphers. Using FELICS, we conducted a fair evaluation of the implementation properties of 19 lightweight block ciphers in the context of two different usage scenarios, which are representatives for common security services in the Internet of Things (IoT). This study gives new insights into the link between the structure of a cryptographic algorithm and the performance it can achieve on embedded microcontrollers. Then, we present the SPARX family of lightweight ciphers and describe the impact of software efficiency in the process of shaping three instances of the family. Finally, we evaluate the cost of the main building blocks of symmetric algorithms to determine which are the most efficient ones. The contributions of this part are particularly valuable for designers of lightweight ciphers, software and security engineers, as well as standardization organizations. In the second part of this work, we focus on side-channel attacks that exploit the power consumption or the electromagnetic emanations of embedded devices executing unprotected implementations of lightweight algorithms. First, we evaluate different selection functions in the context of Correlation Power Analysis (CPA) to infer which operations are easy to attack. Second, we show that most implementations of the AES present in popular open-source cryptographic libraries are vulnerable to side-channel attacks such as CPA, even in a network protocol scenario where the attacker has limited control of the input. Moreover, we describe an optimal algorithm for recovery of the master key using CPA attacks. Third, we perform the first electromagnetic vulnerability analysis of Thread, a networking stack designed to facilitate secure communication between IoT devices. The third part of this thesis lies in the area of side-channel countermeasures against power and electromagnetic analysis attacks. We study efficient and secure expressions that compute simple bitwise functions on Boolean shares. To this end, we describe an algorithm for efficient search of expressions that have an optimal cost in number of elementary operations. Then, we introduce optimal expressions for first-order Boolean masking of bitwise AND and OR operations. Finally, we analyze the performance of three lightweight block ciphers protected using the optimal expressions

    State of the Art in Lightweight Symmetric Cryptography

    Get PDF
    Lightweight cryptography has been one of the hot topics in symmetric cryptography in the recent years. A huge number of lightweight algorithms have been published, standardized and/or used in commercial products. In this paper, we discuss the different implementation constraints that a lightweight algorithm is usually designed to satisfy in both the software and the hardware case. We also present an extensive survey of all lightweight symmetric primitives we are aware of. It covers designs from the academic community, from government agencies and proprietary algorithms which were reverse-engineered or leaked. Relevant national (NIST...) and international (ISO/IEC...) standards are listed. We identified several trends in the design of lightweight algorithms, such as the designers\u27 preference for ARX-based and bitsliced-S-Box-based designs or simpler key schedules. We also discuss more general trade-offs facing the authors of such algorithms and suggest a clearer distinction between two subsets of lightweight cryptography. The first, ultra-lightweight cryptography, deals with primitives fulfilling a unique purpose while satisfying specific and narrow constraints. The second is ubiquitous cryptography and it encompasses more versatile algorithms both in terms of functionality and in terms of implementation trade-offs

    An analyzing process on wireless protection criteria focusing on (WPA) within computer network security

    Get PDF
    Network security from a long ago approaches to cryptography and hash functions which are tremendous and due to the weakness of different vulnerabilities in the networks and obviously there is a significant need for analyzes. In this manuscript, the state-of-the-art wireless environment is focused solely on the sensor technology, in which security needs to be integrated with the Wireless Protected Access (WPA) standards. Wireless networking includes numerous points of view from wireless sensor systems, ad hoc mobile devices, Wi-Max and many more. The authentication and dynamic encryption is modified by system managers so that general communication can be anchored without any sniper effort in order to perform higher degrees of security and overall execution. The key exchange mechanism in wireless systems such as forward cases is accompanied by the sophisticated cryptography so as to anchor the whole computer state. The manuscript carries out a significant audit of test points of view using the methodologies used for the cryptography angle for protection and honesty in the wireless case, stressing Wi-Fi Secure Protected (WPA) needs

    Performance-efficient cryptographic primitives in constrained devices

    Get PDF
    PhD ThesisResource-constrained devices are small, low-cost, usually fixed function and very limitedresource devices. They are constrained in terms of memory, computational capabilities, communication bandwidth and power. In the last decade, we have seen widespread use of these devices in health care, smart homes and cities, sensor networks, wearables, automotive systems, and other fields. Consequently, there has been an increase in the research activities in the security of these devices, especially in how to design and implement cryptography that meets the devices’ extreme resource constraints. Cryptographic primitives are low-level cryptographic algorithms used to construct security protocols that provide security, authenticity, and integrity of the messages. The building blocks of the primitives, which are built heavily on mathematical theories, are computationally complex and demands considerable computing resources. As a result, most of these primitives are either too large to fit on resource-constrained devices or highly inefficient when implemented on them. There have been many attempts to address this problem in the literature where cryptography engineers modify conventional primitives into lightweight versions or build new lightweight primitives from scratch. Unfortunately, both solutions suffer from either reduced security, low performance, or high implementation cost. This thesis investigates the performance of the conventional cryptographic primitives and explores the effect of their different building blocks and design choices on their performance. It also studies the impact of the various implementations approaches and optimisation techniques on their performance. Moreover, it investigates the limitations imposed by the tight processing and storage capabilities in constrained devices in implementing cryptography. Furthermore, it evaluates the performance of many newly designed lightweight cryptographic primitives and investigates the resources required to run them with acceptable performance. The thesis aims to provide an insight into the performance of the cryptographic primitives and the resource needed to run them with acceptable performance. This will help in providing solutions that balance performance, security, and resource requirements for these devices.The Institute of Public Administration in Riyadh, and the Saudi Arabian Cultural Bureau in Londo

    Implementation and Benchmarking of Round 2 Candidates in the NIST Post-Quantum Cryptography Standardization Process Using Hardware and Software/Hardware Co-design Approaches

    Get PDF
    Performance in hardware has typically played a major role in differentiating among leading candidates in cryptographic standardization efforts. Winners of two past NIST cryptographic contests (Rijndael in case of AES and Keccak in case of SHA-3) were ranked consistently among the two fastest candidates when implemented using FPGAs and ASICs. Hardware implementations of cryptographic operations may quite easily outperform software implementations for at least a subset of major performance metrics, such as speed, power consumption, and energy usage, as well as in terms of security against physical attacks, including side-channel analysis. Using hardware also permits much higher flexibility in trading one subset of these properties for another. A large number of candidates at the early stages of the standardization process makes the accurate and fair comparison very challenging. Nevertheless, in all major past cryptographic standardization efforts, future winners were identified quite early in the evaluation process and held their lead until the standard was selected. Additionally, identifying some candidates as either inherently slow or costly in hardware helped to eliminate a subset of candidates, saving countless hours of cryptanalysis. Finally, early implementations provided a baseline for future design space explorations, paving a way to more comprehensive and fairer benchmarking at the later stages of a given cryptographic competition. In this paper, we first summarize, compare, and analyze results reported by other groups until mid-May 2020, i.e., until the end of Round 2 of the NIST PQC process. We then outline our own methodology for implementing and benchmarking PQC candidates using both hardware and software/hardware co-design approaches. We apply our hardware approach to 6 lattice-based CCA-secure Key Encapsulation Mechanisms (KEMs), representing 4 NIST PQC submissions. We then apply a software-hardware co-design approach to 12 lattice-based CCA-secure KEMs, representing 8 Round 2 submissions. We hope that, combined with results reported by other groups, our study will provide NIST with helpful information regarding the relative performance of a significant subset of Round 2 PQC candidates, assuming that at least their major operations, and possibly the entire algorithms, are off-loaded to hardware

    Cryptographic competitions

    Get PDF
    Competitions are widely viewed as the safest way to select cryptographic algorithms. This paper surveys procedures that have been used in cryptographic competitions, and analyzes the extent to which those procedures reduce security risks

    CrISA-X: Unleashing Performance Excellence in Lightweight Symmetric Cryptography for Extendable and Deeply Embedded Processors

    Get PDF
    The selection of a Lightweight Cryptography (LWC) algorithm is crucial for resource limited applications. The National Institute of Standards and Technology (NIST) leads this process, which involves a thorough evaluation of the algorithms’ cryptanalytic strength. Furthermore, careful consideration is given to factors such as algorithm latency, code size, and hardware implementation area. These factors are critical in determining the overall performance of cryptographic solutions at edge devices. Introducing CrISA-X, a Cryptography Instruction Set Architecture extensions designed to improve cryptographic latency on extendable processors. CrISA-X, classified as Generic-Atomic, Block-Specific and Procedure-Specific, leverages RISC processor hardware and a base ISA to effectively execute LWC algorithms. Our study aims to evaluate the execution efficiency of new single-cycle instruction extensions and tightly coupled multicycle instructions on extendable modular RISC processors. CrISA-X provides enhanced speed of various algorithms simultaneously while optimizing ISA adaptability, a feat yet to be accomplished. The extension, diverse for several computation levels, is first specifically tailored for individual algorithms and sets of LWC algorithms, depending on performance, frequency, and area trade-offs. By diligently applying the Min-Max optimization technique, we have configured these extensions to achieve a delicate balance between performance, area code size, etc. Our study presents empirical evidence of the performance enhancement achieved on a real synthesis modular RISC processor. We offer a framework for creating optimized processor hardware and ISA extensions. The CrISA-X framework generally outperforms ISA extensions by delivering significant performance boosts between 3x to 17x while experiencing a relative area cost increase of +12% and +47% in LUTs, in respect to the instruction set category. Notably, as one important example, the utilization of the ASCON algorithm yields a 10x performance boost in contrast to the base ISA instruction implementatio
    • …
    corecore