3 research outputs found

    Characterization and analysis of process variability in deeply-scaled MOSFETs

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 137-147).Variability characterization and analysis in advanced technologies are needed to ensure robust performance as well as improved process capability. This thesis presents a framework for device variability characterization and analysis. Test structure and test circuit design, identification of significant effects in design of experiments, and decomposition approaches to quantify variation and its sources are explored. Two examples of transistor variability characterization are discussed: contact plug resistance variation within the context of a transistor, and AC, or short time-scale, variation in transistors. Results show that, with careful test structure and circuit design and ample measurement data, interesting trends can be observed. Among these trends are (1) a distinct within-die spatial signature of contact plug resistance and (2) a picosecond-accuracy delay measurement on transistors which reveals the presence of excessive external parasitic gate resistance. Measurement results obtained from these test vehicles can aid in both the understanding of variations in the fabrication process and in efforts to model variations in transistor behavior.by Karthik Balakrishnan.Ph.D

    Asynchronous techniques for new generation variation-tolerant FPGA

    Get PDF
    PhD ThesisThis thesis presents a practical scenario for asynchronous logic implementation that would benefit the modern Field-Programmable Gate Arrays (FPGAs) technology in improving reliability. A method based on Asynchronously-Assisted Logic (AAL) blocks is proposed here in order to provide the right degree of variation tolerance, preserve as much of the traditional FPGAs structure as possible, and make use of asynchrony only when necessary or beneficial for functionality. The newly proposed AAL introduces extra underlying hard-blocks that support asynchronous interaction only when needed and at minimum overhead. This has the potential to avoid the obstacles to the progress of asynchronous designs, particularly in terms of area and power overheads. The proposed approach provides a solution that is complementary to existing variation tolerance techniques such as the late-binding technique, but improves the reliability of the system as well as reducing the design’s margin headroom when implemented on programmable logic devices (PLDs) or FPGAs. The proposed method suggests the deployment of configurable AAL blocks to reinforce only the variation-critical paths (VCPs) with the help of variation maps, rather than re-mapping and re-routing. The layout level results for this method's worst case increase in the CLB’s overall size only of 6.3%. The proposed strategy retains the structure of the global interconnect resources that occupy the lion’s share of the modern FPGA’s soft fabric, and yet permits the dual-rail iv completion-detection (DR-CD) protocol without the need to globally double the interconnect resources. Simulation results of global and interconnect voltage variations demonstrate the robustness of the method

    Characterization and mitigation of process variation in digital circuits and systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 155-166).Process variation threatens to negate a whole generation of scaling in advanced process technologies due to performance and power spreads of greater than 30-50%. Mitigating this impact requires a thorough understanding of the variation sources, magnitudes and spatial components at the device, circuit and architectural levels. This thesis explores the impacts of variation at each of these levels and evaluates techniques to alleviate them in the context of digital circuits and systems. At the device level, we propose isolation and measurement of variation in the intrinsic threshold voltage of a MOSFET using sub-threshold leakage currents. Analysis of the measured data, from a test-chip implemented on a 0. 18[mu]m CMOS process, indicates that variation in MOSFET threshold voltage is a truly random process dependent only on device dimensions. Further decomposition of the observed variation reveals no systematic within-die variation components nor any spatial correlation. A second test-chip capable of characterizing spatial variation in digital circuits is developed and implemented in a 90nm triple-well CMOS process. Measured variation results show that the within-die component of variation is small at high voltages but is an increasing fraction of the total variation as power-supply voltage decreases. Once again, the data shows no evidence of within-die spatial correlation and only weak systematic components. Evaluation of adaptive body-biasing and voltage scaling as variation mitigation techniques proves voltage scaling is more effective in performance modification with reduced impact to idle power compared to body-biasing.(cont.) Finally, the addition of power-supply voltages in a massively parallel multicore processor is explored to reduce the energy required to cope with process variation. An analytic optimization framework is developed and analyzed; using a custom simulation methodology, total energy of a hypothetical 1K-core processor based on the RAW core is reduced by 6-16% with the addition of only a single voltage. Analysis of yield versus required energy demonstrates that a combination of disabling poor-performing cores and additional power-supply voltages results in an optimal trade-off between performance and energy.by Nigel Anthony Drego.Ph.D
    corecore