1,605 research outputs found

    Side-channel based intrusion detection for industrial control systems

    Full text link
    Industrial Control Systems are under increased scrutiny. Their security is historically sub-par, and although measures are being taken by the manufacturers to remedy this, the large installed base of legacy systems cannot easily be updated with state-of-the-art security measures. We propose a system that uses electromagnetic side-channel measurements to detect behavioural changes of the software running on industrial control systems. To demonstrate the feasibility of this method, we show it is possible to profile and distinguish between even small changes in programs on Siemens S7-317 PLCs, using methods from cryptographic side-channel analysis.Comment: 12 pages, 7 figures. For associated code, see https://polvanaubel.com/research/em-ics/code

    On the Duality of Probing and Fault Attacks

    Get PDF
    In this work we investigate the problem of simultaneous privacy and integrity protection in cryptographic circuits. We consider a white-box scenario with a powerful, yet limited attacker. A concise metric for the level of probing and fault security is introduced, which is directly related to the capabilities of a realistic attacker. In order to investigate the interrelation of probing and fault security we introduce a common mathematical framework based on the formalism of information and coding theory. The framework unifies the known linear masking schemes. We proof a central theorem about the properties of linear codes which leads to optimal secret sharing schemes. These schemes provide the lower bound for the number of masks needed to counteract an attacker with a given strength. The new formalism reveals an intriguing duality principle between the problems of probing and fault security, and provides a unified view on privacy and integrity protection using error detecting codes. Finally, we introduce a new class of linear tamper-resistant codes. These are eligible to preserve security against an attacker mounting simultaneous probing and fault attacks

    Test Vector Leakage Assessment Development

    Get PDF
    Devices with a lack of countermeasures, which are defenses put into place to thwart an assailant, can be subject to physical attacks. These attacks can lead to the extraction of sensitive information such as keys that are used in cryptographic operations to secure for example intellectual property. Test Vector Leakage Assessment (TVLA) aims at being able to provide detection of information leakage using statistical analysis. This work presents multiple implementations of TVLA that aid in the testing of these systems and countermeasures, which is crucial in keeping information secure

    SoK: Design Tools for Side-Channel-Aware Implementations

    Get PDF
    Side-channel attacks that leak sensitive information through a computing device's interaction with its physical environment have proven to be a severe threat to devices' security, particularly when adversaries have unfettered physical access to the device. Traditional approaches for leakage detection measure the physical properties of the device. Hence, they cannot be used during the design process and fail to provide root cause analysis. An alternative approach that is gaining traction is to automate leakage detection by modeling the device. The demand to understand the scope, benefits, and limitations of the proposed tools intensifies with the increase in the number of proposals. In this SoK, we classify approaches to automated leakage detection based on the model's source of truth. We classify the existing tools on two main parameters: whether the model includes measurements from a concrete device and the abstraction level of the device specification used for constructing the model. We survey the proposed tools to determine the current knowledge level across the domain and identify open problems. In particular, we highlight the absence of evaluation methodologies and metrics that would compare proposals' effectiveness from across the domain. We believe that our results help practitioners who want to use automated leakage detection and researchers interested in advancing the knowledge and improving automated leakage detection

    Security Analysis of Phasor Measurement Units in Smart Grid Communication Infrastructures

    Get PDF
    Phasor Measurement Units (PMUs), or synchrophasors, are rapidly being deployed in the smart grid with the goal of measuring phasor quantities concurrently from wide area distribution substations. By utilizing GPS receivers, PMUs can take a wide area snapshot of power systems. Thus, the possibility of blackouts in the smart grid, the next generation power grid, will be reduced. As the main enabler of Wide Area Measurement Systems (WAMS), PMUs transmit measured values to Phasor Data Concentrators (PDCs) by the synchrophasor standard IEEE C37.118. IEC 61850 and IEC 62351 are the communication protocols for the substation automation system and the security standard for the communication protocol of IEC 61850, respectively. According to the aforementioned communication and security protocols, as well as the implementation constraints of different platforms, HMAC-SHA1 was suggested by the TC 57 WG group in October 2009. The hash-based Message Authentication Code (MAC) is an algorithm for verifying both message integrity and authentication by using an iterative hash function and a supplied secret key. There are a variety of security attacks on the PMU communications infrastructure. Timing Side Channel Attack (SCA) is one of these possible attacks. In this thesis, timing side channel vulnerability against execution time of the HMAC-SHA1 authentication algorithm is studied. Both linear and negative binomial regression are used to model some security features of the stored key, e.g., its length and Hamming weight. The goal is to reveal secret-related information based on leakage models. The results would mitigate the cryptanalysis process of an attacker. Adviser: Yi Qia
    • …
    corecore