29 research outputs found

    Morphological aspects in the diagnosis of skin lesions

    Get PDF
    En col·laboració amb la Universitat de Barcelona (UB), la Universitat Autònoma de Barcelona (UAB) i l’Institut de Ciències Fotòniques (ICFO)The ABCDE (Asymmetry, Border, Color, Rambla de Sant Nebridi, 10, Diameter and Elevation) rule represents a commonly used clinical guide for the early identification of melanoma. Here we develop a methodology based on an Artificial Neural Network which is trained to stablish a clear differentiation between benign and m lesions. This machine learning approach improves prognosis and diagnosis accuracy rates. align In order to obtain the 6 morphological feature data set for each of the 69 lesions considered, a 3D handheld system is used for acquiring the skin images and an image processing algorithm is applied

    Utilizing Soft Computing for Determining Protein Deficiency

    Get PDF
    Abstract— In recent years, the occurrence of protein shortage of children under 5 years old in many poor area has dramatically increased. Since this situation can cause serious problem to children like a delay in their growth, delay in their development and also disfigurement, disability, dependency, the early diagnose of protein shortage is vital. Many applications have been developed in performing disease detection such as an expert system for diagnosing diabetics and artificial neural network (ANN) applications for diagnosing breast cancer, acidosis diseases, and lung cancer. This paper is mainly focusing on the development of protein shortage disease diagnosing application using Backpropagation Neural Network (BPNN) technique. It covers two classes of protein shortage that are Heavy Protein Deficiency. On top of this, a BPNN model is constructed based on result analysis of the training and testing from the developed application. The model has been successfully tested using new data set. It shows that the BPNN is able to early diagnose heavy protein deficiency accurately. Keywords— Artificial Neural Network, Backpropagation Neural Network, Protein Deficiency

    MELASTOMA MALABATHRICUM L. EXTRACTS-BASED INDICATOR FOR MONITORING SHRIMP FRESHNESS INTEGRATED WITH CLASSIFICATION TECHNOLOGY USING NEAREST NEIGHBOURS ALGORITHM

    Get PDF
    As a maritime country, shrimp commodity production in Indonesia is very high and continues to increase. However, because shrimp is a perishable food, we need a detection device. This is because conventional methods that are widely used by the community in detecting freshness of shrimp are only based on the smell. Of course, this is a problem when shrimp are packed in closed containers. In this paper, a method for detecting shrimp is proposed using the Melastoma malabathricum L. - based label indicator. The high content of flavonoids in the extracts allows the changing the colour of the label from red to grey due to the interaction between the label with the OH- group that arises from the shrimp spoilage process. The colour that appears on the label indicator will correlate with the level of shrimp freshness. By increasing detection effectiveness, the classification is performed using the nearest-neighbours algorithm, which is equipped with an image processing mechanism in the form of colour quantization. There are four classifications used to express the quality of shrimp, namely "acceptable," "just acceptable," "unacceptable," and "more unacceptable." The accuracy of applying this method is 71.9%, with the majority of detection errors occurring in the "acceptable" class. Based on these results, it can be stated that the label indicators prepared in this study are very promising to be developed into intelligent packaging components

    Classification of Arrhythmia by Using Deep Learning with 2-D ECG Spectral Image Representation

    Full text link
    The electrocardiogram (ECG) is one of the most extensively employed signals used in the diagnosis and prediction of cardiovascular diseases (CVDs). The ECG signals can capture the heart's rhythmic irregularities, commonly known as arrhythmias. A careful study of ECG signals is crucial for precise diagnoses of patients' acute and chronic heart conditions. In this study, we propose a two-dimensional (2-D) convolutional neural network (CNN) model for the classification of ECG signals into eight classes; namely, normal beat, premature ventricular contraction beat, paced beat, right bundle branch block beat, left bundle branch block beat, atrial premature contraction beat, ventricular flutter wave beat, and ventricular escape beat. The one-dimensional ECG time series signals are transformed into 2-D spectrograms through short-time Fourier transform. The 2-D CNN model consisting of four convolutional layers and four pooling layers is designed for extracting robust features from the input spectrograms. Our proposed methodology is evaluated on a publicly available MIT-BIH arrhythmia dataset. We achieved a state-of-the-art average classification accuracy of 99.11\%, which is better than those of recently reported results in classifying similar types of arrhythmias. The performance is significant in other indices as well, including sensitivity and specificity, which indicates the success of the proposed method.Comment: 14 pages, 5 figures, accepted for future publication in Remote Sensing MDPI Journa

    Scaled conjugate gradient based decision support system for automated diagnosis of skin cancer

    Full text link
    Melanoma is the most deathful form of skin cancer but early diagnosis can ensure a high rate of survival. Early diagnosis is one of the greatest challenges due to lack of experience of general practitioners (GPs). This paper presents a clinical decision support system designed for the use of general practitioners, aiming to save time and resources in the diagnostic process. Segmentation, pattern recognition, and lesion detection are the important steps in the proposed decision support system. The system analyses the images to extract the affected area using a novel proposed segmentation method. It determinates the underlying features which indicate the difference between melanoma and benign images and makes a decision. Considering the efficiency of neural networks in classification of complex data, scaled conjugate gradient based neural network is used for classification. The presented work also considers analyzed performance of other efficient neural network training algorithms on the specific skin lesion diagnostic problem and discussed the corresponding findings. The best diagnostic rates obtainedthrough the proposed decision support system are around 92%

    Utilizing Soft Computing for Determining Protein Deficiency

    Get PDF
    Abstract— In recent years, the occurrence of protein shortage of children under 5 years old in many poor area has dramatically increased. Since this situation can cause serious problem to children like a delay in their growth, delay in their development and also disfigurement, disability, dependency, the early diagnose of protein shortage is vital. Many applications have been developed in performing disease detection such as an expert system for diagnosing diabetics and artificial neural network (ANN) applications for diagnosing breast cancer, acidosis diseases, and lung cancer. This paper is mainly focusing on the development of protein shortage disease diagnosing application using Backpropagation Neural Network (BPNN) technique. It covers two classes of protein shortage that are Heavy Protein Deficiency. On top of this, a BPNN model is constructed based on result analysis of the training and testing from the developed application. The model has been successfully tested using new data set. It shows that the BPNN is able to early diagnose heavy protein deficiency accurately.   Keywords— Artificial Neural Network, Backpropagation Neural Network, Protein Deficiency

    Characterization of digital medical images utilizing support vector machines

    Get PDF
    BACKGROUND: In this paper we discuss an efficient methodology for the image analysis and characterization of digital images containing skin lesions using Support Vector Machines and present the results of a preliminary study. METHODS: The methodology is based on the support vector machines algorithm for data classification and it has been applied to the problem of the recognition of malignant melanoma versus dysplastic naevus. Border and colour based features were extracted from digital images of skin lesions acquired under reproducible conditions, using basic image processing techniques. Two alternative classification methods, the statistical discriminant analysis and the application of neural networks were also applied to the same problem and the results are compared. RESULTS: The SVM (Support Vector Machines) algorithm performed quite well achieving 94.1% correct classification, which is better than the performance of the other two classification methodologies. The method of discriminant analysis classified correctly 88% of cases (71% of Malignant Melanoma and 100% of Dysplastic Naevi), while the neural networks performed approximately the same. CONCLUSION: The use of a computer-based system, like the one described in this paper, is intended to avoid human subjectivity and to perform specific tasks according to a number of criteria. However the presence of an expert dermatologist is considered necessary for the overall visual assessment of the skin lesion and the final diagnosis

    Efficient Marginal Likelihood Computation for Gaussian Process Regression

    Full text link
    In a Bayesian learning setting, the posterior distribution of a predictive model arises from a trade-off between its prior distribution and the conditional likelihood of observed data. Such distribution functions usually rely on additional hyperparameters which need to be tuned in order to achieve optimum predictive performance; this operation can be efficiently performed in an Empirical Bayes fashion by maximizing the posterior marginal likelihood of the observed data. Since the score function of this optimization problem is in general characterized by the presence of local optima, it is necessary to resort to global optimization strategies, which require a large number of function evaluations. Given that the evaluation is usually computationally intensive and badly scaled with respect to the dataset size, the maximum number of observations that can be treated simultaneously is quite limited. In this paper, we consider the case of hyperparameter tuning in Gaussian process regression. A straightforward implementation of the posterior log-likelihood for this model requires O(N^3) operations for every iteration of the optimization procedure, where N is the number of examples in the input dataset. We derive a novel set of identities that allow, after an initial overhead of O(N^3), the evaluation of the score function, as well as the Jacobian and Hessian matrices, in O(N) operations. We prove how the proposed identities, that follow from the eigendecomposition of the kernel matrix, yield a reduction of several orders of magnitude in the computation time for the hyperparameter optimization problem. Notably, the proposed solution provides computational advantages even with respect to state of the art approximations that rely on sparse kernel matrices.Comment: 20 pages, 3 figure

    On the Combination of Logistic Regression and Local Probability Estimates

    Full text link
    In this paper we give a survey of the combination of classifiers. We briefly describe basic principles of machine learning and the problem of classifier construction and review several approaches to generate different classifiers as well as established methods to combine different classifiers. Then, we introduce our novel approach to assess the appropriateness of different classifiers based on their characteristics for each test point individuall

    Psoriasis Skin Disease Classification based on Clinical Images

    Get PDF
    Psoriasis is an autoimmune skin disorder that causes skin plaques to develop into red and scaly patches. It affects millions of people globally. Dermatologists currently employ visual and haptic methods to determine a medical issue's severity. Intelligent medical imaging-based diagnosis systems are now a possibility because of the relatively recent development of deep learning technologies for medical image processing. These systems can help a human expert make better decisions about a patient's health. Convolutional neural networks, or CNNs, on the other hand, have achieved imaging performance levels comparable to, if not better than, those of humans. In the paper, a Dermnet dataset is used. Image preprocessing, fuzzy c-mean-based segmentation, MobileNet-based feature extraction, and a support vector machine (SVM) classification are used for skin disease classification. Dermnet's dataset was investigated for images of skin conditions using three classes Psoriasis, Dermatofibroma, and Melanoma are studied. The performance metrics such as accuracy, precision-recall, and f1-score are evaluated and compared for three classes of skin diseases. Despite working with a smaller dataset, MobileNet with Support Vector Machine outperforms ResNet in terms of accuracy (99.12%), precision (98.65%), and recall (99.66%)
    corecore