8,275 research outputs found

    A Comparison of Evolutionary Algorithms for Tracking Time-Varying Recursive Systems

    Get PDF
    A comparison is made of the behaviour of some evolutionary algorithms in time-varying adaptive recursive filter systems. Simulations show that an algorithm including random immigrants outperforms a more conventional algorithm using the breeder genetic algorithm as the mutation operator when the time variation is discontinuous, but neither algorithm performs well when the time variation is rapid but smooth. To meet this deficit, a new hybrid algorithm which uses a hill climber as an additional genetic operator, applied for several steps at each generation, is introduced. A comparison is made of the effect of applying the hill climbing operator a few times to all members of the population or a larger number of times solely to the best individual; it is found that applying to the whole population yields the better results, substantially improved compared with those obtained using earlier methods

    Adaptive Evolutionary Clustering

    Full text link
    In many practical applications of clustering, the objects to be clustered evolve over time, and a clustering result is desired at each time step. In such applications, evolutionary clustering typically outperforms traditional static clustering by producing clustering results that reflect long-term trends while being robust to short-term variations. Several evolutionary clustering algorithms have recently been proposed, often by adding a temporal smoothness penalty to the cost function of a static clustering method. In this paper, we introduce a different approach to evolutionary clustering by accurately tracking the time-varying proximities between objects followed by static clustering. We present an evolutionary clustering framework that adaptively estimates the optimal smoothing parameter using shrinkage estimation, a statistical approach that improves a naive estimate using additional information. The proposed framework can be used to extend a variety of static clustering algorithms, including hierarchical, k-means, and spectral clustering, into evolutionary clustering algorithms. Experiments on synthetic and real data sets indicate that the proposed framework outperforms static clustering and existing evolutionary clustering algorithms in many scenarios.Comment: To appear in Data Mining and Knowledge Discovery, MATLAB toolbox available at http://tbayes.eecs.umich.edu/xukevin/affec

    Tracking moving optima using Kalman-based predictions

    Get PDF
    The dynamic optimization problem concerns finding an optimum in a changing environment. In the field of evolutionary algorithms, this implies dealing with a timechanging fitness landscape. In this paper we compare different techniques for integrating motion information into an evolutionary algorithm, in the case it has to follow a time-changing optimum, under the assumption that the changes follow a nonrandom law. Such a law can be estimated in order to improve the optimum tracking capabilities of the algorithm. In particular, we will focus on first order dynamical laws to track moving objects. A vision-based tracking robotic application is used as testbed for experimental comparison

    Dynamic Clustering via Asymptotics of the Dependent Dirichlet Process Mixture

    Get PDF
    This paper presents a novel algorithm, based upon the dependent Dirichlet process mixture model (DDPMM), for clustering batch-sequential data containing an unknown number of evolving clusters. The algorithm is derived via a low-variance asymptotic analysis of the Gibbs sampling algorithm for the DDPMM, and provides a hard clustering with convergence guarantees similar to those of the k-means algorithm. Empirical results from a synthetic test with moving Gaussian clusters and a test with real ADS-B aircraft trajectory data demonstrate that the algorithm requires orders of magnitude less computational time than contemporary probabilistic and hard clustering algorithms, while providing higher accuracy on the examined datasets.Comment: This paper is from NIPS 2013. Please use the following BibTeX citation: @inproceedings{Campbell13_NIPS, Author = {Trevor Campbell and Miao Liu and Brian Kulis and Jonathan P. How and Lawrence Carin}, Title = {Dynamic Clustering via Asymptotics of the Dependent Dirichlet Process}, Booktitle = {Advances in Neural Information Processing Systems (NIPS)}, Year = {2013}
    • …
    corecore