16,201 research outputs found

    Semantic Compression for Edge-Assisted Systems

    Full text link
    A novel semantic approach to data selection and compression is presented for the dynamic adaptation of IoT data processing and transmission within "wireless islands", where a set of sensing devices (sensors) are interconnected through one-hop wireless links to a computational resource via a local access point. The core of the proposed technique is a cooperative framework where local classifiers at the mobile nodes are dynamically crafted and updated based on the current state of the observed system, the global processing objective and the characteristics of the sensors and data streams. The edge processor plays a key role by establishing a link between content and operations within the distributed system. The local classifiers are designed to filter the data streams and provide only the needed information to the global classifier at the edge processor, thus minimizing bandwidth usage. However, the better the accuracy of these local classifiers, the larger the energy necessary to run them at the individual sensors. A formulation of the optimization problem for the dynamic construction of the classifiers under bandwidth and energy constraints is proposed and demonstrated on a synthetic example.Comment: Presented at the Information Theory and Applications Workshop (ITA), February 17, 201

    Driver Distraction Identification with an Ensemble of Convolutional Neural Networks

    Full text link
    The World Health Organization (WHO) reported 1.25 million deaths yearly due to road traffic accidents worldwide and the number has been continuously increasing over the last few years. Nearly fifth of these accidents are caused by distracted drivers. Existing work of distracted driver detection is concerned with a small set of distractions (mostly, cell phone usage). Unreliable ad-hoc methods are often used.In this paper, we present the first publicly available dataset for driver distraction identification with more distraction postures than existing alternatives. In addition, we propose a reliable deep learning-based solution that achieves a 90% accuracy. The system consists of a genetically-weighted ensemble of convolutional neural networks, we show that a weighted ensemble of classifiers using a genetic algorithm yields in a better classification confidence. We also study the effect of different visual elements in distraction detection by means of face and hand localizations, and skin segmentation. Finally, we present a thinned version of our ensemble that could achieve 84.64% classification accuracy and operate in a real-time environment.Comment: arXiv admin note: substantial text overlap with arXiv:1706.0949

    TSE-IDS: A Two-Stage Classifier Ensemble for Intelligent Anomaly-based Intrusion Detection System

    Get PDF
    Intrusion detection systems (IDS) play a pivotal role in computer security by discovering and repealing malicious activities in computer networks. Anomaly-based IDS, in particular, rely on classification models trained using historical data to discover such malicious activities. In this paper, an improved IDS based on hybrid feature selection and two-level classifier ensembles is proposed. An hybrid feature selection technique comprising three methods, i.e. particle swarm optimization, ant colony algorithm, and genetic algorithm, is utilized to reduce the feature size of the training datasets (NSL-KDD and UNSW-NB15 are considered in this paper). Features are selected based on the classification performance of a reduced error pruning tree (REPT) classifier. Then, a two-level classifier ensembles based on two meta learners, i.e., rotation forest and bagging, is proposed. On the NSL-KDD dataset, the proposed classifier shows 85.8% accuracy, 86.8% sensitivity, and 88.0% detection rate, which remarkably outperform other classification techniques recently proposed in the literature. Results regarding the UNSW-NB15 dataset also improve the ones achieved by several state of the art techniques. Finally, to verify the results, a two-step statistical significance test is conducted. This is not usually considered by IDS research thus far and, therefore, adds value to the experimental results achieved by the proposed classifier

    Analysis and evaluation of SafeDroid v2.0, a framework for detecting malicious Android applications

    Get PDF
    Android smartphones have become a vital component of the daily routine of millions of people, running a plethora of applications available in the official and alternative marketplaces. Although there are many security mechanisms to scan and filter malicious applications, malware is still able to reach the devices of many end-users. In this paper, we introduce the SafeDroid v2.0 framework, that is a flexible, robust, and versatile open-source solution for statically analysing Android applications, based on machine learning techniques. The main goal of our work, besides the automated production of fully sufficient prediction and classification models in terms of maximum accuracy scores and minimum negative errors, is to offer an out-of-the-box framework that can be employed by the Android security researchers to efficiently experiment to find effective solutions: the SafeDroid v2.0 framework makes it possible to test many different combinations of machine learning classifiers, with a high degree of freedom and flexibility in the choice of features to consider, such as dataset balance and dataset selection. The framework also provides a server, for generating experiment reports, and an Android application, for the verification of the produced models in real-life scenarios. An extensive campaign of experiments is also presented to show how it is possible to efficiently find competitive solutions: the results of our experiments confirm that SafeDroid v2.0 can reach very good performances, even with highly unbalanced dataset inputs and always with a very limited overhead

    Visual Analysis of Spatio-Temporal Event Predictions: Investigating the Spread Dynamics of Invasive Species

    Full text link
    Invasive species are a major cause of ecological damage and commercial losses. A current problem spreading in North America and Europe is the vinegar fly Drosophila suzukii. Unlike other Drosophila, it infests non-rotting and healthy fruits and is therefore of concern to fruit growers, such as vintners. Consequently, large amounts of data about infestations have been collected in recent years. However, there is a lack of interactive methods to investigate this data. We employ ensemble-based classification to predict areas susceptible to infestation by D. suzukii and bring them into a spatio-temporal context using maps and glyph-based visualizations. Following the information-seeking mantra, we provide a visual analysis system Drosophigator for spatio-temporal event prediction, enabling the investigation of the spread dynamics of invasive species. We demonstrate the usefulness of this approach in two use cases
    corecore