1,644 research outputs found

    A Novel Approach to detect COVID-19 from chest X-ray images using CNN

    Get PDF
    In light of the present COVID-19 pandemic, it is important to consider the worth of human life, prosperity, and quality of life while also realizing that it is difficult to restrict case spread and mortality. One of the most difficult challenges for practitioners is identifying individuals who are COVID19-infected and isolating patients to stop COVID transmission. Therefore, identifying the covid19 infection is important. For the detection of COVID-19, a 4-6-hour reverse transcriptase chain reaction is used. Chest X-rays provide us with a different method for detecting Coronavirus early in the disease phase. We detected properties from chest X-ray scans and divided them into three categories with VGG16 as well as ResNet50 deep learning algorithms: COVID-19, normal, and viral pneumonia. To test the model's accuracy in specialized cases, we injected them with 15153 scans. The average COVID-19 case detection accuracy for the ResNet50 model is 91.39%, compared to 89.34% for the VGG16 model. However, a larger dataset is required when using deep learning to identify COVID-19. It accurately detects situations, which is the desired outcome

    Detection and analysis of COVID-19 in medical images using deep learning techniques

    Get PDF
    The main purpose of this work is to investigate and compare several deep learning enhanced techniques applied to X-ray and CT-scan medical images for the detection of COVID-19. In this paper, we used four powerful pre-trained CNN models, VGG16, DenseNet121, ResNet50,and ResNet152, for the COVID-19 CT-scan binary classification task. The proposed Fast.AI ResNet framework was designed to find out the best architecture, pre-processing, and training parameters for the models largely automatically. The accuracy and F1-score were both above 96% in the diagnosis of COVID-19 using CT-scan images. In addition, we applied transfer learning techniques to overcome the insufficient data and to improve the training time. The binary and multi-class classification of X-ray images tasks were performed by utilizing enhanced VGG16 deep transfer learning architecture. High accuracy of 99% was achieved by enhanced VGG16 in the detection of X-ray images from COVID-19 and pneumonia. The accuracy and validity of the algorithms were assessed on X-ray and CT-scan well-known public datasets. The proposed methods have better results for COVID-19 diagnosis than other related in literature. In our opinion, our work can help virologists and radiologists to make a better and faster diagnosis in the struggle against the outbreak of COVID-19.The research leading to these results received funding from the Innovative Medicines Innitiative 2 Joint Undertaking (JU) under grant agreement No 853989. The JU receives support from the European Union's Horizon 2020 research and innovation programme and EFPIA and Global Alliance for TB Drug Development non profit organisation, Bill & Melinda Gates Foundation and University of Dundee

    PLoS One

    Get PDF
    BackgroundTimely information about disease severity can be central to the detection and management of outbreaks of acute respiratory infections (ARI), including influenza. We asked if two resources: 1) free text, and 2) structured data from an electronic medical record (EMR) could complement each other to identify patients with pneumonia, an ARI severity landmark.MethodsA manual EMR review of 2747 outpatient ARI visits with associated chest imaging identified x-ray reports that could support the diagnosis of pneumonia (kappa score \ue2\u20ac\u160=\ue2\u20ac\u1600.88 (95% CI 0.82\ue2\u2c6\ub60.93)), along with attendant cases with Possible Pneumonia (adds either cough, sputum, fever/chills/night sweats, dyspnea or pleuritic chest pain) or with Pneumonia-in-Plan (adds pneumonia stated as a likely diagnosis by the provider). The x-ray reports served as a reference to develop a text classifier using machine-learning software that did not require custom coding. To identify pneumonia cases, the classifier was combined with EMR-based structured data and with text analyses aimed at ARI symptoms in clinical notes.Results370 reference cases with Possible Pneumonia and 250 with Pneumonia-in-Plan were identified. The x-ray report text classifier increased the positive predictive value of otherwise identical EMR-based case-detection algorithms by 20\ue2\u20ac\u201c70%, while retaining sensitivities of 58\ue2\u20ac\u201c75%. These performance gains were independent of the case definitions and of whether patients were admitted to the hospital or sent home. Text analyses seeking ARI symptoms in clinical notes did not add further value.ConclusionSpecialized software development is not required for automated text analyses to help identify pneumonia patients. These results begin to map an efficient, replicable strategy through which EMR data can be used to stratify ARI severity.5U38HK000013-02/HK/PHITPO CDC HHS/United StatesR01 CI000098/CI/NCPDCID CDC HHS/United States23967138PMC374272
    • …
    corecore