3,919 research outputs found

    Dual weighted residual based error control for nonstationary convection-dominated equations: potential or ballast?

    Full text link
    Even though substantial progress has been made in the numerical approximation of convection-dominated problems, its major challenges remain in the scope of current research. In particular, parameter robust a posteriori error estimates for quantities of physical interest and adaptive mesh refinement strategies with proved convergence are still missing. Here, we study numerically the potential of the Dual Weighted Residual (DWR) approach applied to stabilized finite element methods to further enhance the quality of approximations. The impact of a strict application of the DWR methodology is particularly focused rather than the reduction of computational costs for solving the dual problem by interpolation or localization.Comment: arXiv admin note: text overlap with arXiv:1803.1064

    Mixed formulations for the convection-diffusion equation

    Get PDF
    This thesis explores the numerical stability of the stationary Convection-Diffusion-Reaction (CDR) equation in mixed form, where the second-order equation is expressed as two first-order equations using a second variable relating to a derivative of the primary variable. This first-order system uses either a total or diffusive flux formulation. Westart by numerically testing the unstabilised Douglas and Roberts classical discretisation of the mixed CDR equation using Raviart-Thomas elements. The results indicate that,as expected, for both total and diffusive flux, the stability of the formulation degrades dramatically as diffusion decreases.Next, we investigate stabilised formulations that are designed to improve the ability of the discrete problem to cope with problems containing layers. We test the Masud and Kwack method that uses Lagrangian elements but whose analysis has not been developed.We then significantly modify the formulation to allow us to prove existence of a solution and facilitate the analysis. Our new method, which uses total flux, is then tested for convergence with standard tests and found to converge satisfactorily over a range of values of diffusion.Another family of first-order methods called First-Order System of Least-Squares (FOSLS/LSFEM) is also investigated in relation to solving the CDR equation. These symmetric,elliptic methods do not require stabilisation but also do not cope well with sharp layers and small diffusion. Modifications have been proposed and this study includes aversion of Chen et al. which uses diffusive flux, imposing boundary conditions weakly in a weighted formulation.We test our new method against all the aforementioned methods, but we find that other methods do not cope well with layers in standard tests. Our method compares favourably with the standard Streamline-Upwind-Petrov-Galerkin method (SUPG/SDFEM), but overall is not a significant improvement. With further fine-tuning, our method could improve but it has more computational overhead than SUPG.This thesis explores the numerical stability of the stationary Convection-Diffusion-Reaction (CDR) equation in mixed form, where the second-order equation is expressed as two first-order equations using a second variable relating to a derivative of the primary variable. This first-order system uses either a total or diffusive flux formulation. Westart by numerically testing the unstabilised Douglas and Roberts classical discretisation of the mixed CDR equation using Raviart-Thomas elements. The results indicate that,as expected, for both total and diffusive flux, the stability of the formulation degrades dramatically as diffusion decreases.Next, we investigate stabilised formulations that are designed to improve the ability of the discrete problem to cope with problems containing layers. We test the Masud and Kwack method that uses Lagrangian elements but whose analysis has not been developed.We then significantly modify the formulation to allow us to prove existence of a solution and facilitate the analysis. Our new method, which uses total flux, is then tested for convergence with standard tests and found to converge satisfactorily over a range of values of diffusion.Another family of first-order methods called First-Order System of Least-Squares (FOSLS/LSFEM) is also investigated in relation to solving the CDR equation. These symmetric,elliptic methods do not require stabilisation but also do not cope well with sharp layers and small diffusion. Modifications have been proposed and this study includes aversion of Chen et al. which uses diffusive flux, imposing boundary conditions weakly in a weighted formulation.We test our new method against all the aforementioned methods, but we find that other methods do not cope well with layers in standard tests. Our method compares favourably with the standard Streamline-Upwind-Petrov-Galerkin method (SUPG/SDFEM), but overall is not a significant improvement. With further fine-tuning, our method could improve but it has more computational overhead than SUPG

    A flux-corrected RBF-FD method for convection dominated problems in domains and on manifolds

    Get PDF
    In this article we introduce a FCT stabilized Radial Basis Function (RBF)-Finite Difference (FD) method for the numerical solution of convection dominated problems. The proposed algorithm is designed to maintain mass conservation and to guarantee positivity of the solution for an almost random placement of scattered data nodes. The method can be applicable both for problems defined in a domain or if equipped with level set techniques, on a stationary manifold. We demonstrate the numerical behavior of the method by performing numerical tests for the solid-body rotation benchmark in a unit square and for a transport problem along a curve implicitly prescribed by a level set function. Extension of the proposed method to higher dimensions is straightforward and easily realizable
    • …
    corecore