65,361 research outputs found

    Evaluating probabilistic forecasts with scoringRules

    Get PDF
    Probabilistic forecasts in the form of probability distributions over future events have become popular in several fields including meteorology, hydrology, economics, and demography. In typical applications, many alternative statistical models and data sources can be used to produce probabilistic forecasts. Hence, evaluating and selecting among competing methods is an important task. The scoringRules package for R provides functionality for comparative evaluation of probabilistic models based on proper scoring rules, covering a wide range of situations in applied work. This paper discusses implementation and usage details, presents case studies from meteorology and economics, and points to the relevant background literature

    Efficient Learning of Sparse Conditional Random Fields for Supervised Sequence Labelling

    Full text link
    Conditional Random Fields (CRFs) constitute a popular and efficient approach for supervised sequence labelling. CRFs can cope with large description spaces and can integrate some form of structural dependency between labels. In this contribution, we address the issue of efficient feature selection for CRFs based on imposing sparsity through an L1 penalty. We first show how sparsity of the parameter set can be exploited to significantly speed up training and labelling. We then introduce coordinate descent parameter update schemes for CRFs with L1 regularization. We finally provide some empirical comparisons of the proposed approach with state-of-the-art CRF training strategies. In particular, it is shown that the proposed approach is able to take profit of the sparsity to speed up processing and hence potentially handle larger dimensional models

    Similarity-Based Models of Word Cooccurrence Probabilities

    Full text link
    In many applications of natural language processing (NLP) it is necessary to determine the likelihood of a given word combination. For example, a speech recognizer may need to determine which of the two word combinations ``eat a peach'' and ``eat a beach'' is more likely. Statistical NLP methods determine the likelihood of a word combination from its frequency in a training corpus. However, the nature of language is such that many word combinations are infrequent and do not occur in any given corpus. In this work we propose a method for estimating the probability of such previously unseen word combinations using available information on ``most similar'' words. We describe probabilistic word association models based on distributional word similarity, and apply them to two tasks, language modeling and pseudo-word disambiguation. In the language modeling task, a similarity-based model is used to improve probability estimates for unseen bigrams in a back-off language model. The similarity-based method yields a 20% perplexity improvement in the prediction of unseen bigrams and statistically significant reductions in speech-recognition error. We also compare four similarity-based estimation methods against back-off and maximum-likelihood estimation methods on a pseudo-word sense disambiguation task in which we controlled for both unigram and bigram frequency to avoid giving too much weight to easy-to-disambiguate high-frequency configurations. The similarity-based methods perform up to 40% better on this particular task.Comment: 26 pages, 5 figure

    Cross-Lingual Adaptation using Structural Correspondence Learning

    Full text link
    Cross-lingual adaptation, a special case of domain adaptation, refers to the transfer of classification knowledge between two languages. In this article we describe an extension of Structural Correspondence Learning (SCL), a recently proposed algorithm for domain adaptation, for cross-lingual adaptation. The proposed method uses unlabeled documents from both languages, along with a word translation oracle, to induce cross-lingual feature correspondences. From these correspondences a cross-lingual representation is created that enables the transfer of classification knowledge from the source to the target language. The main advantages of this approach over other approaches are its resource efficiency and task specificity. We conduct experiments in the area of cross-language topic and sentiment classification involving English as source language and German, French, and Japanese as target languages. The results show a significant improvement of the proposed method over a machine translation baseline, reducing the relative error due to cross-lingual adaptation by an average of 30% (topic classification) and 59% (sentiment classification). We further report on empirical analyses that reveal insights into the use of unlabeled data, the sensitivity with respect to important hyperparameters, and the nature of the induced cross-lingual correspondences

    Committee-Based Sample Selection for Probabilistic Classifiers

    Full text link
    In many real-world learning tasks, it is expensive to acquire a sufficient number of labeled examples for training. This paper investigates methods for reducing annotation cost by `sample selection'. In this approach, during training the learning program examines many unlabeled examples and selects for labeling only those that are most informative at each stage. This avoids redundantly labeling examples that contribute little new information. Our work follows on previous research on Query By Committee, extending the committee-based paradigm to the context of probabilistic classification. We describe a family of empirical methods for committee-based sample selection in probabilistic classification models, which evaluate the informativeness of an example by measuring the degree of disagreement between several model variants. These variants (the committee) are drawn randomly from a probability distribution conditioned by the training set labeled so far. The method was applied to the real-world natural language processing task of stochastic part-of-speech tagging. We find that all variants of the method achieve a significant reduction in annotation cost, although their computational efficiency differs. In particular, the simplest variant, a two member committee with no parameters to tune, gives excellent results. We also show that sample selection yields a significant reduction in the size of the model used by the tagger

    Forgetting Exceptions is Harmful in Language Learning

    Get PDF
    We show that in language learning, contrary to received wisdom, keeping exceptional training instances in memory can be beneficial for generalization accuracy. We investigate this phenomenon empirically on a selection of benchmark natural language processing tasks: grapheme-to-phoneme conversion, part-of-speech tagging, prepositional-phrase attachment, and base noun phrase chunking. In a first series of experiments we combine memory-based learning with training set editing techniques, in which instances are edited based on their typicality and class prediction strength. Results show that editing exceptional instances (with low typicality or low class prediction strength) tends to harm generalization accuracy. In a second series of experiments we compare memory-based learning and decision-tree learning methods on the same selection of tasks, and find that decision-tree learning often performs worse than memory-based learning. Moreover, the decrease in performance can be linked to the degree of abstraction from exceptions (i.e., pruning or eagerness). We provide explanations for both results in terms of the properties of the natural language processing tasks and the learning algorithms.Comment: 31 pages, 7 figures, 10 tables. uses 11pt, fullname, a4wide tex styles. Pre-print version of article to appear in Machine Learning 11:1-3, Special Issue on Natural Language Learning. Figures on page 22 slightly compressed to avoid page overloa

    Memory-Based Learning: Using Similarity for Smoothing

    Full text link
    This paper analyses the relation between the use of similarity in Memory-Based Learning and the notion of backed-off smoothing in statistical language modeling. We show that the two approaches are closely related, and we argue that feature weighting methods in the Memory-Based paradigm can offer the advantage of automatically specifying a suitable domain-specific hierarchy between most specific and most general conditioning information without the need for a large number of parameters. We report two applications of this approach: PP-attachment and POS-tagging. Our method achieves state-of-the-art performance in both domains, and allows the easy integration of diverse information sources, such as rich lexical representations.Comment: 8 pages, uses aclap.sty, To appear in Proc. ACL/EACL 9

    Multitask Learning Deep Neural Networks to Combine Revealed and Stated Preference Data

    Full text link
    It is an enduring question how to combine revealed preference (RP) and stated preference (SP) data to analyze travel behavior. This study presents a framework of multitask learning deep neural networks (MTLDNNs) for this question, and demonstrates that MTLDNNs are more generic than the traditional nested logit (NL) method, due to its capacity of automatic feature learning and soft constraints. About 1,500 MTLDNN models are designed and applied to the survey data that was collected in Singapore and focused on the RP of four current travel modes and the SP with autonomous vehicles (AV) as the one new travel mode in addition to those in RP. We found that MTLDNNs consistently outperform six benchmark models and particularly the classical NL models by about 5% prediction accuracy in both RP and SP datasets. This performance improvement can be mainly attributed to the soft constraints specific to MTLDNNs, including its innovative architectural design and regularization methods, but not much to the generic capacity of automatic feature learning endowed by a standard feedforward DNN architecture. Besides prediction, MTLDNNs are also interpretable. The empirical results show that AV is mainly the substitute of driving and AV alternative-specific variables are more important than the socio-economic variables in determining AV adoption. Overall, this study introduces a new MTLDNN framework to combine RP and SP, and demonstrates its theoretical flexibility and empirical power for prediction and interpretation. Future studies can design new MTLDNN architectures to reflect the speciality of RP and SP and extend this work to other behavioral analysis
    • …
    corecore