12 research outputs found

    Computing Preferred Answer Sets by Meta-Interpretation in Answer Set Programming

    Full text link
    Most recently, Answer Set Programming (ASP) is attracting interest as a new paradigm for problem solving. An important aspect which needs to be supported is the handling of preferences between rules, for which several approaches have been presented. In this paper, we consider the problem of implementing preference handling approaches by means of meta-interpreters in Answer Set Programming. In particular, we consider the preferred answer set approaches by Brewka and Eiter, by Delgrande, Schaub and Tompits, and by Wang, Zhou and Lin. We present suitable meta-interpreters for these semantics using DLV, which is an efficient engine for ASP. Moreover, we also present a meta-interpreter for the weakly preferred answer set approach by Brewka and Eiter, which uses the weak constraint feature of DLV as a tool for expressing and solving an underlying optimization problem. We also consider advanced meta-interpreters, which make use of graph-based characterizations and often allow for more efficient computations. Our approach shows the suitability of ASP in general and of DLV in particular for fast prototyping. This can be fruitfully exploited for experimenting with new languages and knowledge-representation formalisms.Comment: 34 pages, appeared as a Technical Report at KBS of the Vienna University of Technology, see http://www.kr.tuwien.ac.at/research/reports

    The DLV System for Knowledge Representation and Reasoning

    Full text link
    This paper presents the DLV system, which is widely considered the state-of-the-art implementation of disjunctive logic programming, and addresses several aspects. As for problem solving, we provide a formal definition of its kernel language, function-free disjunctive logic programs (also known as disjunctive datalog), extended by weak constraints, which are a powerful tool to express optimization problems. We then illustrate the usage of DLV as a tool for knowledge representation and reasoning, describing a new declarative programming methodology which allows one to encode complex problems (up to Δ3P\Delta^P_3-complete problems) in a declarative fashion. On the foundational side, we provide a detailed analysis of the computational complexity of the language of DLV, and by deriving new complexity results we chart a complete picture of the complexity of this language and important fragments thereof. Furthermore, we illustrate the general architecture of the DLV system which has been influenced by these results. As for applications, we overview application front-ends which have been developed on top of DLV to solve specific knowledge representation tasks, and we briefly describe the main international projects investigating the potential of the system for industrial exploitation. Finally, we report about thorough experimentation and benchmarking, which has been carried out to assess the efficiency of the system. The experimental results confirm the solidity of DLV and highlight its potential for emerging application areas like knowledge management and information integration.Comment: 56 pages, 9 figures, 6 table

    Finding similar or diverse solutions in answer set programming: theory and applications

    Get PDF
    For many computational problems, the main concern is to find a best solution (e.g., a most preferred product configuration, a shortest plan, a most parsimonious phylogeny) with respect to some well-described criteria. On the other hand, in many real-world applications, computing a subset of good solutions that are similar/diverse may be desirable for better decision-making. For one reason, the given computational problem may have too many good solutions, and the user may want to examine only a few of them to pick one; in such cases, finding a few similar/diverse good solutions may be useful. Also, in many real-world applications the users usually take into account further criteria that are not included in the formulation of the optimization problem; in such cases, finding a few good solutions that are close to or distant from a particular set of solutions may be useful. With this motivation, we have studied various computational problems related to finding similar/diverse (resp. close/distant) solutions with respect to a given distance function, in the context of Answer Set Programming (ASP). We have introduced novel offline/online computational methods in ASP to solve such computational problems. We have modified an ASP solver according to one of our online methods, providing a useful tool (CLASP-NK) for various ASP applications. We have showed the applicability and effectiveness of our methods/tools in three domains: phylogeny reconstruction, AI planning, and biomedical query answering. Motivated by the promising results, we have developed computational tools to be used by the experts in these areas

    Generating explanations for complex biomedical queries

    Get PDF
    Recent advances in health and life sciences have led to generation of a large amount of biomedical data. To facilitate access to its desired parts, such a big mass of data has been represented in structured forms, like databases and ontologies. On the other hand, representing these databases and ontologies in different formats, constructing them independently from each other, and storing them at different locations have brought about many challenges for answering queries about the knowledge represented in these ontologies and databases. One of the challenges for the users is to be able to represent such a biomedical query in a natural language, and get its answers in an understandable form. Another challenge is to extract relevant knowledge from different knowledge resources, and integrate them appropriately using also definitions, such as, chains of gene-gene interactions, cliques of genes based on gene-gene relations, or similarity/diversity of genes/drugs. Furthermore, once an answer is found for a complex query, the experts may need further explanations about the answer. The first two challenges have been addressed earlier using Answer Set Programming (ASP), with the development of a software system (called BIOQUERY-ASP). This thesis addresses the third challenge: explanation generation in ASP. In this thesis, we extend the earlier work on the first two challenges, to new forms of biomedical queries (e.g., about drug similarity) and to new biomedical knowledge resources. We introduce novel mathematical models and algorithms to generate (shortest or k different) explanations for queries in ASP, and provide a comprehensive theoretical analysis of these methods. We implement these algorithms and integrate them in BIOQUERY-ASP, and provide an experimental evaluation of our methods with some complex biomedical queries over the biomedical knowledge resources PHARMGKB, DRUGBANK, BIOGRID, CTD, SIDER, DISEASEONTOLOGY and ORPHADATA

    Finding optimal alternatives based on efficient comparative preference inference

    Get PDF
    Choosing the right or the best option is often a demanding and challenging task for the user (e.g., a customer in an online retailer) when there are many available alternatives. In fact, the user rarely knows which offering will provide the highest value. To reduce the complexity of the choice process, automated recommender systems generate personalized recommendations. These recommendations take into account the preferences collected from the user in an explicit (e.g., letting users express their opinion about items) or implicit (e.g., studying some behavioral features) way. Such systems are widespread; research indicates that they increase the customers' satisfaction and lead to higher sales. Preference handling is one of the core issues in the design of every recommender system. This kind of system often aims at guiding users in a personalized way to interesting or useful options in a large space of possible options. Therefore, it is important for them to catch and model the user's preferences as accurately as possible. In this thesis, we develop a comparative preference-based user model to represent the user's preferences in conversational recommender systems. This type of user model allows the recommender system to capture several preference nuances from the user's feedback. We show that, when applied to conversational recommender systems, the comparative preference-based model is able to guide the user towards the best option while the system is interacting with her. We empirically test and validate the suitability and the practical computational aspects of the comparative preference-based user model and the related preference relations by comparing them to a sum of weights-based user model and the related preference relations. Product configuration, scheduling a meeting and the construction of autonomous agents are among several artificial intelligence tasks that involve a process of constrained optimization, that is, optimization of behavior or options subject to given constraints with regards to a set of preferences. When solving a constrained optimization problem, pruning techniques, such as the branch and bound technique, point at directing the search towards the best assignments, thus allowing the bounding functions to prune more branches in the search tree. Several constrained optimization problems may exhibit dominance relations. These dominance relations can be particularly useful in constrained optimization problems as they can instigate new ways (rules) of pruning non optimal solutions. Such pruning methods can achieve dramatic reductions in the search space while looking for optimal solutions. A number of constrained optimization problems can model the user's preferences using the comparative preferences. In this thesis, we develop a set of pruning rules used in the branch and bound technique to efficiently solve this kind of optimization problem. More specifically, we show how to generate newly defined pruning rules from a dominance algorithm that refers to a set of comparative preferences. These rules include pruning approaches (and combinations of them) which can drastically prune the search space. They mainly reduce the number of (expensive) pairwise comparisons performed during the search while guiding constrained optimization algorithms to find optimal solutions. Our experimental results show that the pruning rules that we have developed and their different combinations have varying impact on the performance of the branch and bound technique
    corecore