1,063 research outputs found

    Narrowband delay tolerant protocols for WSN applications. Characterization and selection guide

    Get PDF
    This article focuses on delay tolerant protocols for Wireless Sensor Network (WSN) applications, considering both established and new protocols. We obtained a comparison of their characteristics by implementing all of them on an original platform for network simulation, and by testing their behavior on a common test-bench. Thereafter, matching the requirements linked to each application with the performances achieved in the test-bench, allowed us to define an application oriented protocol selection guide

    A Secure 3-Way Routing Protocols for Intermittently Connected Mobile Ad Hoc Networks

    Get PDF
    The mobile ad hoc network may be partially connected or it may be disconnected in nature and these forms of networks are termed intermittently connected mobile ad hoc network (ICMANET). The routing in such disconnected network is commonly an arduous task. Many routing protocols have been proposed for routing in ICMANET since decades. The routing techniques in existence for ICMANET are, namely, flooding, epidemic, probabilistic, copy case, spray and wait, and so forth. These techniques achieve an effective routing with minimum latency, higher delivery ratio, lesser overhead, and so forth. Though these techniques generate effective results, in this paper, we propose novel routing algorithms grounded on agent and cryptographic techniques, namely, location dissemination service (LoDiS) routing with agent AES, A-LoDiS with agent AES routing, and B-LoDiS with agent AES routing, ensuring optimal results with respect to various network routing parameters. The algorithm along with efficient routing ensures higher degree of security. The security level is cited testing with respect to possibility of malicious nodes into the network. This paper also aids, with the comparative results of proposed algorithms, for secure routing in ICMANET

    Graded Reliance Based Routing Scheme for Wireless Sensor Networks

    Get PDF
    In this paper Graded Reliance based routing algorithm is proposed to deal with defective nodes in Wireless Sensor Networks (WSN’s).The algorithm is intended to validated or build evidence that, by dynamically learning from previous experience and adapting the changes in the operational environment the application performance can be maximized and also enhance operative agility. Quality of service and social network measures are used to evaluate the confidence score of the sensor node. A dynamic model-based analysis is formulated for best reliance composition, aggregation, and formation to maximize routing performance. The results indicate that reliance based routing approaches yields better performance in terms of message delivery ratio and message delay without incurring substantial message overhead

    SurvSec: A New Security Architecture for Reliable Network Recovery from Base Station Failure of Surveillance WSN

    Get PDF
    AbstractSecuring surveillance wireless sensor networks (WSNs) in hostile environments such as borders, perimeters and battlefields during Base Station (BS) failure is challenging. Surveillance WSNs are highly vulnerable to BS failure. The attackers can render the network useless by only destroying the BS as the needed efforts to destroy the BS is much less than that is needed to destroy the network. This attack scenario will give the attackers the best chance to compromise many legitimate nodes. Previous works have tackled BS failure by deploying a mobile BS or by using multiple BSs. Despite the best electronic countermeasures, intrusion tolerance and anti-traffic analysis strategies to protect the BSs, an adversary still can destroy them. This paper proposes a novel security architecture called Surveillance Security (SurvSec) for reliable network recovery from single BS failure of surveillance WSN with single BS. SurvSec relies on a set of sensor nodes serve as Security Managers for management and storage of the security related data of all sensor nodes. SurvSec security architecture provides methodologies for choosing and changing the security managers of the surveillance WSN. SurvSec has three components: (1) Sensor nodes serve as Security Managers, (2) Data Storage System, (3) Data Recovery System. Furthermore, both the frame format of the stored data is carefully built and the security threats are encoded to allow minimum overheads for SurvSec security architecture. In this paper, we provide detailed specifications of SurvSec security architecture. We evaluate our designed security architecture for reliable network recovery from BS failure. Our evaluation shows that the proposed new security architecture can meet all the desired specifications and our analysis shows that the provided Security Managers are capable of network recovery from BS failure

    T2AR: trust-aware ad-hoc routing protocol for MANET

    Get PDF
    • …
    corecore