The 2nd International Conference on Ambient Systems, Networks and Technologies, ANT 2011

SurvSec: A New Security Architecture for Reliable Network Recovery from Base Station Failure of Surveillance WSN

Mohamed Helmy Megaheda, Prof. Dimitrios Makrakisb, Bidi Yingc

a School of Information Technology and Engineering, Electrical Engineering Department, University of Ottawa, Ottawa, Canada
mmega080@uottawa.ca

b School of Information Technology and Engineering, Electrical Engineering Department, University of Ottawa, Ottawa, Canada
dimitris@site.uottawa.ca

c School of Information Technology and Engineering, Electrical Engineering Department, University of Ottawa, Ottawa, Canada
yingbidi@gmail.com

Abstract

Securing surveillance wireless sensor networks (WSNs) in hostile environments such as borders, perimeters and battlefields during Base Station (BS) failure is challenging. Surveillance WSNs are highly vulnerable to BS failure. The attackers can render the network useless by only destroying the BS as the needed efforts to destroy the BS is much less than that is needed to destroy the network. This attack scenario will give the attackers the best chance to compromise many legitimate nodes. Previous works have tackled BS failure by deploying a mobile BS or by using multiple BSs. Despite the best electronic countermeasures, intrusion tolerance and anti-traffic analysis strategies to protect the BSs, an adversary still can destroy them. This paper proposes a novel security architecture called Surveillance Security (SurvSec) for reliable network recovery from single BS failure of surveillance WSN with single BS. SurvSec relies on a set of sensor nodes serve as Security Managers for management and storage of the security related data of all sensor nodes. SurvSec security architecture provides methodologies for choosing and changing the security managers of the surveillance WSN. SurvSec has three components: (1) Sensor nodes serve as Security Managers, (2) Data Storage System, (3) Data Recovery System. Furthermore, both the frame format of the stored data is carefully built and the security threats are encoded to allow minimum overheads for SurvSec security architecture. In this paper, we provide detailed specifications of SurvSec security architecture. We evaluate our designed security architecture for reliable network recovery from BS failure. Our evaluation shows that the proposed new security architecture can meet all the desired specifications and our analysis shows that the provided Security Managers are capable of network recovery from BS failure.

Keywords: Security Manager; Wireless Sensor Network; Reliable; Network Recovery; Surveillance; Base Station; Failure.

1. Introduction

Wireless sensor networks (WSNs) are deployed in many missions’ critical applications such as surveillance [1], and one of the key issues to the success of their mission is security. The general objective of such an application is to alert the control unit in advance to the occurrence of events of interest in hostile regions. The event of interest will vary according to its mission which might be the presence of moving vehicles or target detection or other events where there are several types of sensors such as Vibration, Motion, Tracking, Video, and Infrared sensors which can be used for surveillance applications [2]. With their deployment, various novel security attacks have appeared. The
aims of these attacks are usually to compromise nodes, eavesdropping for traffic analysis, destroy base station (BS) or to disrupt data flow. We believe that, collaborative work of attackers will first launch physical attacks against the BSs of surveillance WSN include jamming and destruction then they will compromise many legitimate nodes to destroy the deployed network security and to cover their unauthorized intrusions.

BS is a critical part of a WSN and an entire WSN can be rendered useless by taking down its BS. Indeed, it is crucial to protect a BS against both software-based and physical attacks. Several intrusion tolerant techniques have been developed to protect a BS against software-based remote attacks such as DoS attacks that flood the BS with packets, and remote spoofing of the BS to misdirect legitimate sensor data [3]. Software-based techniques cannot protect BS against physical attacks. Therefore, some works have been done to address the problem of protecting a BS against physical attacks through concealing its geographic location in the network [4].

Our focus in this work is to address single BS failure in single BS network. We consider a feasible attack towards single BS as single point of failure or even towards multiple BSs to render the whole WSN useless and after this attack collaborative work of attackers can compromise many legitimate nodes.

Also, previous works lack both the procedures to ensure network reliability and security during BS failure such as storing then sending reports concerning security threats against nodes to the new BS and the procedure to verify the trustworthiness of the deployed sensor nodes by the new BS otherwise a new WSN must be re-deployed which is a high cost and it needs time.

To the best of our knowledge, there has not been work done for securing the surveillance WSN during the time between the BS failure and the new mobile BS deployment which is the perfect time for attackers to compromise many nodes then destroy the security of the whole system. Also, there is not any work that describes how the new BS will verify the trustworthiness of the deployed WSN otherwise a new WSN must be deployed. Therefore, for mission critical applications such as surveillance WSN, if the BS fails, we propose to address this problem through employing our new designed security architecture of Surveillance Security (SurvSec) to detect the BS failure, monitor the network sensitive security issues to store security data in multiple replica, and send the stored data to the new BS after it is authenticated. Furthermore, BS failure shows the importance of reporting the monitored security threats to the new BS through securely storing this sensitive data then sending this data during the recovery process to the new BS.

These procedures will result in reliable recovery from such attack. BS failure can be alleviated such as work discussed in [5] by the use of multiple base stations deployed along the periphery of the field, and allowing each base station to act as a data sink, multiple BSs failure is an important performance metric which must be considered and it is a serious attack. Therefore, if the BS failed and the network nodes are not trusted by the new BS, the whole network must be redeployed. Re-deploying such mission critical large surveillance WSN shows the importance of SurvSec security architecture to efficiently recover from single BS failure and later on multiple BSs failure by updating the new BS with all the security information that is needed to trust the network nodes thus enabling to achieve reliable network recovery from BS failure.

Objective of the paper: the goal of this paper is to present a novel recovery approach from BS failure that includes monitoring the network security issues to store the sensitive data, and send the stored data to the new BS after deployment to enable efficient recovery from BS failure while maintaining the operation of the network. Our motivation is the high probability of single BS failure as single point of failure to render the whole network ineffective. Our goal is to design new security architecture SurvSec for reliable network recovery from BS failure of surveillance WSN in hostile environment. The contributions of this work can be summarized as:

The first contribution is the development of the new security architecture called Surveillance Security (SurvSec) for reliable network recovery from BS failure of surveillance WSN with hierarchical data storage system.

The second contribution is the design of distributed security managers to enable distributed network security and distributed secure storage. The third contribution is hierarchical data storage and data recovery system for the security data of the sensor nodes. The rest of the paper is organized as follows. Section 2 presents the related work. Section 3 describes the assumptions, attacker model and network setup. Section 4 describes an overview of our security architecture SurvSec to recover from BS failure with its ingredients. Section 5 presents SurvSec data storage system and its analysis. Section 6 presents SurvSec data recovery system and its analysis. Section 7 presents the simulation results. Finally, Section 8 concludes the paper.
2. Related Work

In this section, we present a brief overview of the related works such as some previous approaches taken towards enhancing BS security, fault tolerant models, and security protocols in wireless sensor networks.

Because the BS is a single point of failure and all the data is routed towards it, if it failed then the entire network can be disabled. Therefore, there are number of proposed strategies designed for securing the sensor network against the threats that can lead to the BS failure. These protocols are summarized as location concealing of BS through privacy algorithms [6], relocating the BS [7], using multiple mobile BSs [7], multipath routing to multiple BSs [3], intrusion tolerant software [8], and anti-traffic analysis strategies such as random fake paths to confuse the adversary and random areas of high communication activity [4].

Since BS and nodes are prone to failure due to energy depletion, hardware failure, communication link errors, software attacks and physical attacks, therefore, fault tolerance is one of the critical issues in WSNs. Fault tolerance is defined as the ability of the system to deliver a desired level of functionality in the presence of faults [9, 10].

All of the fault management protocols lack the procedures for secure and reliable network recovery from BS failure which are important issues for mission critical applications such as surveillance WSN in hostile environment.

There are different security protocols proposed and implemented for use with wireless sensor networks. In [11], Perrig et al. proposed Security Protocols for Sensor Networks, SPINS, a suite of security protocols optimized for sensor networks. It consists of two secure building blocks SNEP and µTESLA. In [12], Karlof et al. designed the replacement for the unfinished SNEP, known as TinySec.

All of the security protocols lack the procedures for secure and reliable network recovery from BS failure which are important issues for mission critical applications such as surveillance WSN in hostile environment.

In this paper, we propose a new security architecture called surveillance security (SurvSec) for reliable network recovery from BS failure of surveillance WSN in hostile environment. More specifically, the architecture should allow two main steps. First step is the secure data storage to store the security data and secure the network instead of deploying a new network which is a high cost. The second step is the reliable recovery from BS failure by collecting the stored data to the new BS.

3. Network Assumptions

We consider a hierarchical sensor network that is composed of large number of sensor nodes with unique ID and single base station placed in layers where one layer is defined as group of nodes connected to the upper sensor node. The nodes are arranged in clusters and it is assumed they have the ability to detect the compromised nodes. The nodes have Local Intrusion Detection System (LIDS) capable of detecting Cloning attack, Sybil attack and other attacks.

Meanwhile, some nodes continuously store the detected security threats and all other security data related to sensor nodes where these nodes are named security managers. Following the previous works on data storage in WSNs, there are several categories but two main approaches: Centralized data storage [13–16] which is suitable for streaming data applications, and Distributed data storage [17–21] which is suitable to provide information services to the authorized users such as soldiers in the battlefield. Other approaches are the centric data storage systems and those based on the collaborative work between sensor nodes to build the data storage infrastructure systems.

4. Overview of SurvSec Security Architecture

In this section, we provide an overview of the SurvSec security architecture. We need to identify the required procedures to store the security related data which will allow reliable network recovery from base station failure. Also, this section describes the functionalities of sensor nodes selected as security managers to employ the distributed security concept for the sensor network.

SurvSec has a security report and this report content is the security related data of sensor nodes which are: Node Index, and part of the reported attacks are: Node Compromise Attack, Revoked Node, Local Intrusion Detection (LID) Cloning Attack, LID Sybil Attack, LID Sinkhole Attack, LID Wormhole Attack, LID Selective Forwarding Attack, Node Outage, Awake Node, Sleep Node, Node Failure, Node Misbehavior, Selfish Node, Message Corruption, Routing Attacks, Denial-of-Service (DoS) Attacks, Security Level, Re-keying.
4.1. Security Managers Setup and Functions

In wireless sensor networks, all the security related information concerning the sensor nodes must be stored in a distributed manner in some sensor nodes which will be named security managers to allow the network to be able to verify the trustworthiness of the sensor nodes after security attacks and during all critical situations such as base station failure by retrieving the stored critical information of the security threats such as compromised node attack.

The security managers are responsible for the followings:
1- Storage and management of the security related data of sensor nodes.
2- Distribution and exchanging of the Shared Keys between sensor nodes for encryption.
3- Security managers have a very important feature to add to the security of the WSN which is its capability to stop data query from spreading to every sensor node by flooding messages. This feature provide the network with the ability to return data back to the sink from only the security managers where this data is concerning the security related data of all sensor nodes.

Security Managers Network Setup and the Methodology to choose the Security Managers:
1- The base station divides the network into divisions of three layers as shown in Figure 1.
2- The base station assigns the first security managers as the sensor nodes cluster heads of the first layer sensor nodes as shown in Figure 1. The security manager generates a group key between the security managers and its downstream sensor nodes.
3- The base station assigns the next security managers after three layers of the cluster heads and so on. The security manager generates a group key between the security managers and its downstream sensor nodes.
4- The base station changes the security managers from time to time according to the sensor nodes power and the life time of the network.

4.2. Communications of Nodes in the Tree

We have two sensor nodes which are forwarding nodes and security managers’ nodes.

The security managers are chosen by the base station. If a security threat takes place at a sensor node, the sensor node will report the security threat to its security manager such as wormhole attack. Also, if a compromised node attack takes place at a sensor node, the sensor node’s upper layer node in the hierarchical architecture will report this security threat to the security manager which is responsible for this sensor node.

4.3. SurvSec Components:

1- The main component of SurvSec is the hierarchical security managers which is vital to the implementation of the distributed security concept.
2- Second component is the data storage system with a proposed frame format for stored data.
3- Third component is the data recovery system.

5. SurvSec Data Storage System

In this section, we explain the stored data frame format and the security threats coding where and we found that the base station failure is the worst attack scenario because the attacker can compromise many legitimate nodes and the new base station cannot verify the trustworthiness of the deployed sensor nodes of the network. The heart of our system is founded on the use of encoded attacks, stored data frame format and data recovery system using sensor nodes called security managers.

5.1. SurvSec Nodes Indexing and Threats Coding

1- Nodes Indexing.
Each node has a unique node ID. The node ID is stored at the security manager unencrypted to be searched in case of incoming enquires to investigate the sensor nodes security status.

2- Threats Coding.
We will build a table to encode each security threat into a determined bits code at that table which is loaded on each sensor node.

5.2. SurvSec Data Storage Frame Format

The stored data frame format is the following:
1- Count to present the attack number against the sensor node. This count is 7 bits to enable maximum attacks number of 128 attacks and it is sent by the node itself.
2- Time to present the time of the attack. This time is 17 bits to enable 5 bits for the hours, 6 bits for minutes and 6 bits for seconds and it is added at the security managers.
3- Attack ID presents the encoded attacks and it is 6 bits to enable maximum attacks of 64 attacks. This attack ID is sent by the node itself.
4- Attacked node ID is 10 bits to enable maximum number of 1024 nodes in each branch of sensor nodes. This node ID is sent by the node itself or by the monitored nodes. This is a limitation to the proposed design.
5- Attacked node reputation is 2 bits to enable 4 reputations levels which are good, medium, over medium and bad. It is added at the security managers.
6- Data replica number which is 6 bits to enable 64 data replicas within the security managers.
7- Stored Record Data Integrity is 32 bits. This data integrity is added at the security managers.

The total stored data at the security manager of one monitored sensor node as one record for one attack is 80 bits and it will be increased by 6 bits for each different added attack. We expect to have one or two different attacks for each sensor node.

6. SurvSec Data Recovery System

This section describes our proposed recovery system where we found that we cannot use the erasure coding [22] to recover the error at the 6 bits of the attack ID because the number of used bits for error correction code will largely increase as the attacks increased. Also, the computations to generate and recover the errors of the encoded attacks will be expensive. Therefore, we proposed to use multiple replicas to ensure the correct query results when investigating the situation of a sensor node security status.

There must be at least three replicas of the stored data for data recovery where each record specifying a security attacks is stored at least three times at three security managers.
The procedures for the stored data recovery system:

1- During the base station failure the sensor nodes send their security reports which include the attacks ID on the sensor nodes along with the data integrity for the stored data frame format of the security related data.

2- The security manager checks the data integrity of the sent data and if the security manager founds error in the process of verification for the data integrity, the security manager will send two queries to two security managers underneath to ensure the correct result of the attack ID for the reported sensor node. If the two results are the same, therefore, there is no problem to accept the result. But, if the two results are different with polluted data integrity, the security manager will send a query to a third security manager to ensure the attack ID.

3- After the authentication process of the new deployed base station or the recovered base station, the last layer of the security managers will send the security related data of its downstream sensor nodes.

4- The base station checks the data integrity of the sent data and if the base station founds error in the process of verification for the data integrity, the base station will send two queries to two security managers underneath to ensure the correct result of the attack ID for the reported sensor node. If the two results are the same, therefore, there is no problem to accept the result. But, if the two results are different with polluted data integrity, the security manager will send a query to a third security manager to ensure the attack ID.

7. Simulation Results and Performance Analysis

We built an analytical model for the proposed design and we implemented a simulator in MATLAB that can scale to thousands of nodes. In this simulator, sensors can send and receive data from each other’s. This data is the security related data regarding the security reports of sensor nodes. The simulation verifies the correctness and the feasibility of our security architecture. It is our future work to implement SurvSec in some sensor network testbeds with all its ingredients. Our simulation scenarios include N nodes distributed randomly. We choose N as 10,000 sensor nodes. The followings are the built models for simulation:

1- Network setup model for the security managers.
2- Attacker model.
3- Changing of security managers’ model.
4- Data storage model.
5- Data recovery model.
6- Update / Delete security related data model.
7- Network trustworthiness model.

7.1. Metrics:

The following metrics are considered.

1- Communications overheads: it is defined as the number of queries sent from the sensor node to the security manager (SM) result from number of attacks then from the SM to other SMs until the last SM at the last layer of sensor nodes near the base station (BS). We need SurvSec to have minimum communications overheads. Figure 2 shows that the communications overheads increase as the number of attacks increase. We assume eight layers sensor network and each attack is at the first layer which will result in eight communication overheads at all layers of the sensor network as shown in Figure 2. When an attack occurs at the first layer sensor nodes as shown in Figure 1 the attacked sensor node will send to its security manager with one communication overhead and so on until the BS with total of 8 communications overheads.

Communication overheads=K \times n.

Where K is (number of layers – the layer of the attack + 1) and n is (number of attacks)
2- Storage overheads: it is defined as the total stored data at the entire security managers’ plus the base station result from number of attacks. Figure 3 shows that the storage overheads increase as the number of attacks increase. We assume eight layers sensor network and each attack is at the first layer which will result in storing the data at three security managers and BS with total of 320 bits storage overheads where one attack stores 80 bits of security data as shown in Figure 3.

![Fig. 3 Storage Overheads](image)

Data storage overheads = 80 X K X (n+1), Where K is (number of attacks) and n is the number of security managers storing one copy of the security related data and we add one because the BS also stores the security related data.

3- Recovered data overheads: it is defined as the needed data to recover from the attacks after the deployment of the new base station. Figure 4 shows that the recovered data overheads increase as the number of attacks increase. We assume eight layers sensor network and one attack can be recovered from 80 bits stored data at the last layer of the security managers near the base station as shown in Figure 1. The recovered data overheads can be shown in Figure 4.

![Fig. 4 Recovered Data to Base Station](image)

Data recovery overheads = 80 X n where n is (number of attacks).

7.2. Efficiency:

We now assess the performance of the proposed SurvSec security architecture in terms of the network trustworthiness after the deployment of the new base station. Therefore, we will analyze the network trustworthiness for our proposed security architecture. The attacked security managers are critical to the efficiency of SurvSec. Generally speaking, the more attacked security managers the less network trustworthiness.

Figure 5 shows an increasing rate of attacking the security managers which will result in decreasing the network trustworthiness.

The network trustworthiness is 100% in case there is no attacked security manager. The network trustworthiness ratio decreases when the security managers attacked because the security managers as security data senders cannot send their security reports and this can be shown in Figure 5.

![Fig. 5 Network Trustworthiness with Attacked Security Managers](image)
8. Conclusion

In this paper, we proposed the first security architecture to achieve reliable network recovery from base station failure. Concretely, we proposed a reliable network recovery from base station failure of surveillance wireless sensor network in hostile environment to improve the security data survival capability in presence of base station failure. We further enhance such scheme by employing distributed security managers. Our scheme is resilient to base station failure through our designed data storage and recovery systems.

The performance analysis and the simulation results of our proposed hierarchical secure data storage and recovery system provide the WSN with high confidence for reliable network recovery from the base station failure of surveillance WSN in hostile environment.

References