456 research outputs found

    Millimeter-Wave Ultra-Wideband Six-Port Receiver Using Cross-Polarized Antennas

    Get PDF
    This paper presents a new low-cost millimeter-wave ultra-wideband (UWB) transceiver architecture operating over V-band from 60 to 64 GHz. Since the local oscillator (LO) power required in the operation of six-port receiver is generally low (compared to conventional one using diode mixers), the carrier recovery or LO synchronization is avoided by using second transmission path and cross-polarized antennas. The six-port model used in system simulation is based on S-parameters measurements of a rectangular waveguide hybrid coupler. The receiver architecture is validated by comparisons between transmitter and receiver bit sequences and bit error rate results of 500 Mb/s pseudorandom QPSK signal

    Co-design of Reconfigurable and Multifunction Passive RF/Microwave Components

    Get PDF
    In order to meet the market demands, multi-band communication systems that are able to accommodate different wireless technologies to be compatible with different wireless standards should be investigated and realized. Multifunction and multi-band RF front-end components are promising solutions for reducing the size and enhancing the performance of multi-band communication systems. This dissertation focuses on the design and implementation of different multifunction and tunable microwave components for use in multi-standard, flexible transceiver. For frequency-domain duplexing (FDD) communication systems, in which the uplink and downlink channels are carried on different RF frequencies, a diplexer is an essential component to separate the transmitting and receiving signals from the antenna. Electrically tunable diplexers simplify the architecture of reconfigurable RF-front end. Moreover, in modern communication systems, the crowding of the spectrum and the scaling of electronics can result in higher common-mode interference and even-order non-linearity issues. In this dissertation, three tunable compact SIW-based dual-mode diplexers, with various SE (single-ended) and BAL (balanced) capabilities, are introduced for the first time. The dual-mode operation results in a dependent tuning between the two ports. The presented designs are for SE-SE, SE-BAL, and BAL-BAL. However, based on the presented design concepts, any combination of the diplexer ports can be achieved in terms of supporting the balanced and single-ended system interface. The fabricated diplexers show low insertion loss, high isolation, good tuning range and high common mode rejection. Tunable bandstop filter (BSF) is one of the essential components in the design of RF front-ends that require wide-band operations. A wide-open front-end leaves the receiver vulnerable to jamming by high-power signals. As a result, this type of front-ends requires dynamic isolation of any interfering signal. Realization of such filters in a balanced configuration, as a second function, is an important step in the realization of full-balanced RF front-ends. Balanced (differential) circuits have many important advantages over unbalanced (single-ended) circuits such as immunity to system noise, reduction of transient noise generation and inherent suppression of even-order nonlinearities. All reported balanced filters are bandpass filters that target wide pass-bands and high common-mode rejection. These filters are necessary for wide-band RF front-ends but, as mentioned above, leave the system open to interferers and jammers. In this dissertation, a new differential coupling structure for evanescent-mode cavity resonators is developed, enabling the design of fully-balanced tunable BSF. The proposed filter is tunable from 1.57-3.18 GHz with 102% tuning range. In addition, over the full range, the measured 10-dB fractional bandwidth ranges from 1-2.4%, and the attenuation level is better than 47 dB. Lastly, Substrate Integrated Waveguide (SIW) evanescent-mode cavity resonators (EVA) are employed in the design of RF couplers, quadrature hybrid and rat-race couplers. These couplers are used in the design of numerous RF front-end components such as power amplifiers, balanced mixers, and antenna array feeding networks. Utilizing such resonators (EVA) in the design allows the couplers to have wide spurious-free range, low power consumption, high power handling capability and both tunability and filtering capabilities. The proposed quadrature hybrid coupler can be tuned starting from 1.32–2.22 GHz with a measured insertion loss range from 1.29 to 0.7 dB. The measured reflection and isolation are better than 12 dB and 17 dB, respectively. Moreover, the coupler has a measured spurious free range of 5.1–3fo (lowest–highest frequency). Regarding rat-race coupler, two designs are introduced. The first design is based on a full-mode cavity while the second one is more compact and based on a half-mode cavity. Both designs show more than 70% tuning range, and the isolation is better than 30 dB

    Digitally Controlled Microwave Components for High-Power Radar System

    Get PDF
    Radar Systems are among the most widely used communication systems. They are used in both military and civilian applications such as: Remote sensing, Microwave Sounder (MWR), Ship Navigation, and Air Traffic Control (ATC). Radar systems use high power electromagnetic signals to detect and locate faraway objects such as aircrafts or ships. The development of radar started in the 1930s, before and during the Second World War, however it is still an important area of research with its critical role in various applications. Typically, radar systems require high-power to cover large areas. Such high power cannot be derived from one source. Therefore, multiple power sources are combined together to achieve such high power, where these sources must be synchronized and in-phase. In the normal operation of a traditional power combining network, the internal matching of the network is the most important design factor, so that the power sources will be combined without any significant losses. However, in case of failure of any source before the combining stage, the power of the working sources will be reflected and dissipated into a protection circuit causing huge losses and degradation in the overall system performance. In theory, it is impossible for any three-port passive networks (such as power combiners) to satisfy three conditions: losslesssness, internal matching, and the reciprocity. The power combining is usually made out of conducting linear material to satisfy both the reciprocity and the losslessness conditions. Hence, the failure of one source at the combiner port leads to reflection as the network theoretically cannot be internally matched. To overcome this limitation, the power combining system must deploy active components to avoid the mismatch situations. In this thesis, we propose a system which improves the performance of power combining networks by detecting the failure events of the malfunctioning source and directs the properly-functioning source to the output by the aid of electrically controlled switches. The proposed system uses directional couplers to extract a power sample from the signal passing through each branch. We build and test the controlling subsystem where all the required elements are integrated up to the proposed design. Moreover, we propose a novel Band-Pass Filter (BPF) structure using coupled structure resonators to reject the out band and reduce the noise power as a pre-filtering stage to the energy detection. Also, energy detection technique is used to identify which power source is still in operation. Finally, we provide closed-form mathematical expressions for the performance of the proposed energy detector in terms of the probability of false alarm and detection
    • …
    corecore