791 research outputs found

    Symmetry Breaking for Answer Set Programming

    Full text link
    In the context of answer set programming, this work investigates symmetry detection and symmetry breaking to eliminate symmetric parts of the search space and, thereby, simplify the solution process. We contribute a reduction of symmetry detection to a graph automorphism problem which allows to extract symmetries of a logic program from the symmetries of the constructed coloured graph. We also propose an encoding of symmetry-breaking constraints in terms of permutation cycles and use only generators in this process which implicitly represent symmetries and always with exponential compression. These ideas are formulated as preprocessing and implemented in a completely automated flow that first detects symmetries from a given answer set program, adds symmetry-breaking constraints, and can be applied to any existing answer set solver. We demonstrate computational impact on benchmarks versus direct application of the solver. Furthermore, we explore symmetry breaking for answer set programming in two domains: first, constraint answer set programming as a novel approach to represent and solve constraint satisfaction problems, and second, distributed nonmonotonic multi-context systems. In particular, we formulate a translation-based approach to constraint answer set solving which allows for the application of our symmetry detection and symmetry breaking methods. To compare their performance with a-priori symmetry breaking techniques, we also contribute a decomposition of the global value precedence constraint that enforces domain consistency on the original constraint via the unit-propagation of an answer set solver. We evaluate both options in an empirical analysis. In the context of distributed nonmonotonic multi-context system, we develop an algorithm for distributed symmetry detection and also carry over symmetry-breaking constraints for distributed answer set programming.Comment: Diploma thesis. Vienna University of Technology, August 201

    Decompositions of Grammar Constraints

    Full text link
    A wide range of constraints can be compactly specified using automata or formal languages. In a sequence of recent papers, we have shown that an effective means to reason with such specifications is to decompose them into primitive constraints. We can then, for instance, use state of the art SAT solvers and profit from their advanced features like fast unit propagation, clause learning, and conflict-based search heuristics. This approach holds promise for solving combinatorial problems in scheduling, rostering, and configuration, as well as problems in more diverse areas like bioinformatics, software testing and natural language processing. In addition, decomposition may be an effective method to propagate other global constraints.Comment: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligenc

    A Complete Solver for Constraint Games

    Full text link
    Game Theory studies situations in which multiple agents having conflicting objectives have to reach a collective decision. The question of a compact representation language for agents utility function is of crucial importance since the classical representation of a nn-players game is given by a nn-dimensional matrix of exponential size for each player. In this paper we use the framework of Constraint Games in which CSP are used to represent utilities. Constraint Programming --including global constraints-- allows to easily give a compact and elegant model to many useful games. Constraint Games come in two flavors: Constraint Satisfaction Games and Constraint Optimization Games, the first one using satisfaction to define boolean utilities. In addition to multimatrix games, it is also possible to model more complex games where hard constraints forbid certain situations. In this paper we study complete search techniques and show that our solver using the compact representation of Constraint Games is faster than the classical game solver Gambit by one to two orders of magnitude.Comment: 17 page

    A Mining-Based Compression Approach for Constraint Satisfaction Problems

    Full text link
    In this paper, we propose an extension of our Mining for SAT framework to Constraint satisfaction Problem (CSP). We consider n-ary extensional constraints (table constraints). Our approach aims to reduce the size of the CSP by exploiting the structure of the constraints graph and of its associated microstructure. More precisely, we apply itemset mining techniques to search for closed frequent itemsets on these two representation. Using Tseitin extension, we rewrite the whole CSP to another compressed CSP equivalent with respect to satisfiability. Our approach contrast with previous proposed approach by Katsirelos and Walsh, as we do not change the structure of the constraints.Comment: arXiv admin note: substantial text overlap with arXiv:1304.441
    • …
    corecore