260 research outputs found

    Wavelet Integrated CNNs for Noise-Robust Image Classification

    Full text link
    Convolutional Neural Networks (CNNs) are generally prone to noise interruptions, i.e., small image noise can cause drastic changes in the output. To suppress the noise effect to the final predication, we enhance CNNs by replacing max-pooling, strided-convolution, and average-pooling with Discrete Wavelet Transform (DWT). We present general DWT and Inverse DWT (IDWT) layers applicable to various wavelets like Haar, Daubechies, and Cohen, etc., and design wavelet integrated CNNs (WaveCNets) using these layers for image classification. In WaveCNets, feature maps are decomposed into the low-frequency and high-frequency components during the down-sampling. The low-frequency component stores main information including the basic object structures, which is transmitted into the subsequent layers to extract robust high-level features. The high-frequency components, containing most of the data noise, are dropped during inference to improve the noise-robustness of the WaveCNets. Our experimental results on ImageNet and ImageNet-C (the noisy version of ImageNet) show that WaveCNets, the wavelet integrated versions of VGG, ResNets, and DenseNet, achieve higher accuracy and better noise-robustness than their vanilla versions.Comment: CVPR accepted pape

    A Scalable Architecture for Discrete Wavelet Transform on FPGA-Based System

    Get PDF

    Multi-wavelet residual dense convolutional neural network for image denoising

    Full text link
    Networks with large receptive field (RF) have shown advanced fitting ability in recent years. In this work, we utilize the short-term residual learning method to improve the performance and robustness of networks for image denoising tasks. Here, we choose a multi-wavelet convolutional neural network (MWCNN), one of the state-of-art networks with large RF, as the backbone, and insert residual dense blocks (RDBs) in its each layer. We call this scheme multi-wavelet residual dense convolutional neural network (MWRDCNN). Compared with other RDB-based networks, it can extract more features of the object from adjacent layers, preserve the large RF, and boost the computing efficiency. Meanwhile, this approach also provides a possibility of absorbing advantages of multiple architectures in a single network without conflicts. The performance of the proposed method has been demonstrated in extensive experiments with a comparison with existing techniques.Comment: 9 pages, 9 figure

    Top-down design of digital signal processing systems

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1996.Includes bibliographical references (leaves 45-46).by Amy M. Singer.M.Eng

    The Importance of Anti-Aliasing in Tiny Object Detection

    Full text link
    Tiny object detection has gained considerable attention in the research community owing to the frequent occurrence of tiny objects in numerous critical real-world scenarios. However, convolutional neural networks (CNNs) used as the backbone for object detection architectures typically neglect Nyquist's sampling theorem during down-sampling operations, resulting in aliasing and degraded performance. This is likely to be a particular issue for tiny objects that occupy very few pixels and therefore have high spatial frequency features. This paper applied an existing approach WaveCNet for anti-aliasing to tiny object detection. WaveCNet addresses aliasing by replacing standard down-sampling processes in CNNs with Wavelet Pooling (WaveletPool) layers, effectively suppressing aliasing. We modify the original WaveCNet to apply WaveletPool in a consistent way in both pathways of the residual blocks in ResNets. Additionally, we also propose a bottom-heavy version of the backbone, which further improves the performance of tiny object detection while also reducing the required number of parameters by almost half. Experimental results on the TinyPerson, WiderFace, and DOTA datasets demonstrate the importance of anti-aliasing in tiny object detection and the effectiveness of the proposed method which achieves new state-of-the-art results on all three datasets. Codes and experiment results are released at https://github.com/freshn/Anti-aliasing-Tiny-Object-Detection.git
    • …
    corecore