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A Scalable Architecture for Discrete Wavelet
Transform on FPGA-Based System

Xun Zhang
Institut Superieur d’Electronique de Paris-ISEP

France

1. Introduction

In recent year, the Forward and Inverse Discrete Wavelet Transform (FDWT/IDWT) (S.Mallet,
1999) has been widely used as an alternative to the existing time-frequency representations
such as DFT and DCT. It has become a powerful tool in many areas, such as image
compression and analysis, texture discrimination, fractal analysis, pattern recognition and so
on. The recent and future developments of high definition digital video and the diversity of
the terminals had led to consider a multi-resolution codec. In this context, the FDWT/IDWT
as well as the others computational functions such as Motion Estimation (ME) are required to
be scalable and flexible to support rich multimedia applications and adapt to the fast changing
of standards requirement. In this background, a universal, extremely scalable and flexible
computational architecture which can adapt to variable workload would be more and more
important and suitable for the multimedia application in the future.
In the literature, there have been several proposals devoted to the hardware implementation of
FDWT/IDWT. Some proposals(M.A.Trenas et al., 2002) (et al, 2002) (Lee & Lim, 2006)(Ravasi,
2002)(P.Jamkhandi et al., 2000)(Tseng et al., 2003)addressed the importance of flexibility and
proposed programmable DWT architectures based on two types: VLSI or FPGA architecture.
The VLSI architectures have large limitations in terms of flexibility and scalability compared
to the FPGA architectures. Even though some recent solutions proposed programmable
and scalable for either variable wavelet filters(Olkkonen & T.Olkkonen, 2010) (Lee & Lim,
2006) or the structure of FDWT, they remind, in addition to their cost, dedicated to specifics
algorithms and cannot be adapted to future solutions. In another hand, the existing FPGA
architectural solutions are mainly ASIC like architectures and use external off-the-shelf
memory components which represent a bottleneck for data access. The possibility of
parallelizing the processing elements offered by FPGAs associated to a sequential access to
data and bandwidth limitations do not enhance the overall computing throughput. The
very powerful commercial VLIW digital signal processor obtains its performance thanks to
a double data-path with a set of arithmetic and logic operators with a possibility of parallel
executions and a wide execution pipeline. However, these performances are due to a high
frequency working clock. Even though these DSP has a parallel but limited access to a set
of instructions, the data memory access remains sequential. The performance requirement is
paid by high circuit complex and power consumption. Most of work focuses on the reuse of
devices likes FPGAs for different applications or different partitions of one applications.
In order to square up these needs, we propose a novel DWT architecture and implementation
method. The proposed architecture can support multi-standard by reconfiguring the
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Fig. 1. Application adaptive configuration

interconnection between date memories and processing elements. Moreover, the number
of processing element and its working frequency could be reconfigured dynamically. A
controller plays a key role as a reconfigurable interface allowing multiple accesses to local
memory, external memory through a DMA and feeding the processing element in an
optimal fashion. An implementation method is developed to identify parallelism level of
processing element and working frequency as well as to find out the tradeoff between power
consumption and performance. In comparing with others VLSI and ASIC architecture, double
size of memory can be economic in using our novel architecture.
In the following paper, we start, in Section2 by presenting a definition of adaptation in two
manners: the application adaptive and task adaptive, within the system complexe context. We
then give a brief overview of DWT algorithm in Section 3 where we detail a reconfigurable
DWT hardware processor architecture. In order to experimentally explicit our proposed
system, Section 4 focus on the detail of our proposed reconfigurable architecture which
supports our DWT algorithm implementation. Section 5 focus on the implmentation, analysis
and validation of system. Finally, Section 6 summarizes and concludes this work.

2. Levels of adaptation

In the multimedia computing environment, adaptation can be seen in two manners: the
application adaptive and task adaptive. Following the adaptation of computing environement
the different applications or different standard of one application can be switched in run-time.
For example, the multimedia terminal switches it use from playing a movie to answering
a video call. The task adaptive consists of the switching different versions of a task of an
application, this situation can occur for instance in down scaling or up scaling situations.

2.1 Application adaptive

For a given domain, applications can be described by a set of processing tasks and sub tasks.
The difference between the applications could be represented with common processing tasks
and specific processing tasks. Figure 1-A2 shows an example of two applications A1 and
A2 featuring common tasks (continuous lines) and specific tasks (dash lines). Switching from
application A1 to application A2requires replacement of specific tasks and the communication
between newly loaded tasks and common tasks. In some cases, the simultaneous execution
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of two applications is required. To achieve this, different versions of specific tasks must be
available.

2.2 Task adaptive

Each task of an application commonly consists of a set of sub-tasks or a set of operators
depending on the complexity of task as shown in figure1-A3. To enable task adaptivity,
different versions of a task for a given algorithm must be defined and characterised in terms
of power, area, throughput, efficiency and other objectives. For the same task, it must be
also possible to change the type of algorithm in order to adapt the application to the future
standards.
In this background, the adaptability of application helps us to configure partially one part
of application for adapting to a new application. The task adaptive level permits us mainly
to make a small change in the task to make the application adapt to different sceneries. In
this paper, we focus on the task adaptive so as to realize muti DWT processing algorithms by
using partial reconfiguration technique.

3. 2-D DWT processing algorithm

A survery of 2-D DWT architecture can be referenced in the paper Olkkonen & T.Olkkonen
(2010). The two dimensional (2D) forward discrete wavelet transform (FDWT) is a rapid
decomposition in the multimedia application domain. The FDWT is computed by successive
low-pass and high-pass filtering. The output of each filter is decimated that is every second
value is removed halving de length of the output S.Mallet (1999). The output of each filter
stage is made of transform coefficients and each filter stage represents a level of transform.
The low pass result is then transformed by the same process and this is repeated until the
desired level is reached. In the Inverse discrete wavelet transform (IDWT), the approximation
and detail coefficients at every level are up-sampled by two, passed through the low pass and
high pass filters and then added. This process is continued through the same number of levels
as in the decomposition process to obtain the original signal. In this paper we will focus on
the implementation of IDWT, the same approach will be applied to FDWT.

3.1 Classical processing approach

The classical approach to 2D decoding is to process each layer in the tree decomposition
separately and to process the vertical and horizontal layers successively one after the other.
The performance of this approach is strongly limited by the management of temporary data
required between two successive layers and between horizontal and vertical filtering. For a
2D image with N rows and N columns and L levels, the amount of data to be filtered on each
layer increase ( for IDWT) by a factor of four from one layer to the next, and the total amount of
processed data along the whole tree reconstruction process is given by the following equation:

D =
L

∑
i=1

N × N

4i−1
=

4L
− 1

3 × 4L−1
× N × N (1)

To process a N × N image, a temporal memory of size

D − N × N = (
4L

− 1

3 × 4L−1
)× N × N (2)

is required. As an example, for 2 level resolution a temporal memory of 0.25 N × N size is
required. For a given layer, the filtering process is achieved horizontally and vertically; thus
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two read accesses and two writes accesses are necessary and the total amount of data read and
written is expressed as Dw = Dr = 2 × D. The memory bandwidth B, in bidirectional access
case, can be considered as the production of the total amount of data processed for a frame
per second ( f ps) Td f = (Dr + Dw)× f ps and the number of bits Nb of a coefficient:

B = Td f × Nb (3)

As an example, for a gray level image of 512 × 512 pixels with 25 frame per second, 8 bits
per pixel and 2 levels of reconstruction, a bandwidth of 260 Mb/s is required. These results
illustrate the memory management problem as the main bottleneck of the classical approach.

3.2 Proposed processing approach

In order to reduce the memory size and to optimize the overall system performance, the
wavelet algorithm is redesigned to exploit efficiently the inherent processing parallelism. This
processing parallelism is possible if the required data is accessible in parallel, accordingly a
data partitioning is used. The degree of parallelism and thus of the data partitioning will
depend on the level of transformation, the number of levels and data dependency.
The proposed organization is shown in figure 2 depicting the memory fragmentation (2-a)
and tasks allocation (2-b) on processing elements for two level IDWT. It is a compromise
and intermediate solution between a massive parallelism and a sequential execution. The
processing tasks are mainly filtering operations witch are organized and allocated to a
processing element so that the among of data processed is the same. Indeed, if we consider a
W × W bloc, an IDWT will be processed in three phases as shown in figure (3). In phase Φ1

The processing element PE1 requires 2 × W
2 ×

W
2 = W×W

2 data accesses to reconstruct the LL

bloc meanwhile the processing element PE2 can process vertically the W×W
2 remaining data

(HL and HH). In phase Φ2, when the two processing elements terminate their executions, the
LL bloc is reconstructed and the pressing element PE2 can resume its vertical executions on

the W×W
2 available data. In phase Φ3, after the termination of PE2, data is available to process

the horizontal pass on a bloc of W ×Wdata. Using PE1 and PE2 in parallel, the data processed

by each PE is of W×W
2 . This architecture is scalable and can be extended to different levels of

resolutions by an adequate choice of processing elements.

4. System overall architecture

With the down scaling technology, the modern chips can integrate a huge quatity of mixed
grain hardware resources ranging from several hard microprocessors, hard arith- metic
operators to hundred of thousand of simple gates allowing the integration of various soft
cores. The prob- lem of resources management becomes then very acute especially in
reconfigurable systems. In these systems, the management of reconfigurations is a very
important part in the design phase due to the complexity of hardware reconfigurations and
the reconfigurability needs of an aplication.
In the different proposed solutions, the two parts of reconfiguration that are reconfigurable
capabilities of the hardware and the different reconfigurations possibilities of an application
are not taken into account. A layered reconfiguration management approach through a hierar-
chical decomposition of a system will allow us to solve this problem.
The proposed adaptable architectue shown in figure 1- c, allowing the adaptation of differents
applications and an application in different conditions, is organised as a set of clusters. Each
cluster is designed to execute a sub-set of tasks. This clusters are parallelisable, so that the

28 Discrete Wavelet Transforms: Algorithms and Applications
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Fig. 2. Processing approach in 2D IDWT onto two-level(a); task allocation(b)
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Fig. 3. 2-D IDWT Processing phases
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same set of processing are performed on multiple data blocs. Each cluster is composed of
an heterogeneous multiprocessor cores that allow software reuse, one or several Reconfig-
urable Processing Modules (RPU), a Reconfigurable Communication Module (RCM), and on
chip memory. The RPM allows hardware acceleration and can be configured in a way that
supports different versions of a task. The reconfigurable interface (RIF) is used to build the
inter- connection between differents modules. Each RPM can be reconfigured at runtime.
Each cluster has a local configuration manager implemented in an on chip processor that
controls the sequences of reconfigurations of the cluster. In this local configuration level, all
clusters are configurable in parallel and independently. The reconfiguration process allocates
dynamicaly to differents tasks of an application the adequate hard- ware ressources and
optimal operation frequency and voltage. The presence of local configuration managers
allows the acceleration of the adaptation process. To control the overall system, a global
reconfiguration level is necessary. In this level, the necessary informations are managed in
order to modify the global organisation of the system by configuring the communication
between clusters and the elements of a cluster, allowing for instance to switch from an
application to another.
The overall architectureM.Guarisco et al. (2007) is depicted in figure 4. Three memory blocks
are present, while the first one and the last one repectively store original data image and
deliver computed data, the second block feeds the processing elements. In addition to these
three blocks, the system is composed of a reconfigurable processing unit two data organization
units and control unit. This last one unit allows to connect the right memory to the right Unit
at the right time. Once the memory bloc 1 is full (and as a consequence memory bloc 3 is
empty, or at least, all his bytes are read or store in external memory), each memory datapath
is switch allowing new picture datas to be treated. A new cycle begins, memory 3 is this time
filled and datas in memory 1 are transforming.

Fig. 4. Porposed DWT processing system architecture

4.1 RPU instance

The reconfigurable Processing Unit (RPU) allows the implementation of different types of
wavelet filter. A filter (task) is a set of arithmetic and logic operators. A configuration of RPU
consists of a type of filter or a version of a filter. For a given filter, corresponding operators can
be connected by different ways in order to carry out different filter versions. These different

30 Discrete Wavelet Transforms: Algorithms and Applications
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Fig. 5. General architecture of a RPU

versions can be parallel, in pipeline, sequential or an association of both methods. A possible
architecture of the RPU and conction with reconfigurable interface is shown in the figure5
Chart1 lists number of computation operators needed (number of additioner, shifter,
multiplier by filtering operation). We have choose two filters in order to illustrate adaptation
at task level.

Filters Additions Shifts Multiplications

5/3 5 2 0

2/6 5 2 0

SPB 7 4 1

9/7-M 8 2 1

2/10 7 2 2

5/11-C 10 3 0

5/11-A 10 3 0

6/14 10 3 1

SPC 8 4 2

13/7-T 10 2 2

13/7-C 10 2 2

9/7-F 12 4 4

Table 1. Different filter types of wavelet transform

31A Scalable Architecture for Discrete Wavelet Transform on FPGA-Based System
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Table 1 lists the number of main computational requirements (the number of additions,
shifts, and multiplications per filtering operation). We choose two filters to illustrate the task
adaptive level.

4.1.0.1 The 5/3 lifting based wavelet transform

The IDWT 5/3 lifting based wavelet transform has short filter length for both low-pass and
high-pass filter. They are computed through following equations :

D[n] = S0[n]− [1/4(D[n] + D[n − 1]) + 1/2] (4)

S[n] = D0[n] + [1/2(S0(n + 1) + S0[n])] (5)

The equations for FDWT 5/3 are given bellow:

D[n] = D0[n]− [1/2(S0(n + 1) + S0[n])]] (6)

S[n] = s0[n] + [1/4(D[n] + D[n − 1]) + 1/2] (7)

D[n] is the even term and S[n] is the odd term. The corresponding data flow graph(DFG)
is shown in figure 6. It is composed of two partitions: odd and even. Each partition is
implemented in the corresponding data path of the RPU. The register file is used to hold
intermediate computation results.

4.1.0.2 The 9/7 − F based FDWT

The 9/7-F FDWT is an efficient approach which is computed through following equations:

D1[n] = D0[n] + [
203

128
(−S0[n + 1]− S0[n]) + 0.5] (8)

S1[n] = S0[n] + [
217

4096
(−D1[n]− D1[n − 1]) + 0.5] (9)

D[n] = D1[n] + [
113

128
(D1[n + 1] + D1[n]) + 0.5] (10)

S[n] = S1[n] + [
1817

4096
(D1[n] + D1[n − 1]) + 0.5] (11)

There is similarities between equations of 5/3 filter and those of 9/7 − F filter which implies
same similarities between the data flow graph of the two filters. It is clear that by duplicating
the dataflow graph of filter 5/3 and inserting four multipliers we obtain the data flow graph of
the 9/7 filter. Moreover, if we consider the table 1, we can see that by partially reconfiguring
the 9/7 filter we can implement all the list of the table. The reconfiguration of 9/7 filter
consists of suppressing or disconnecting unused operators and generation of an adequate
control and an efficient data management.

4.2 Reconfigurable interface

The reconfigurable interface is the key element of Reconfigurable Prcessing Unit (RPU). One of
its functionality is to connect together the RPU and control communication protocol between
the RPU and internal memory. Th controler has to generate adresses for writing and reading
operations in memory. A reconfigurable sequencer is used in order to manage the operation
and communication sequence. The reconfigurable interface is composed of a three levels
pipelined structure for calcul units apart from the one of the first level. Steps of pipeline
are : reading (R), execution (E), and writing (W). In our bench test, two versions of interfaces
holding different filters implementation are defined. The pipeline stages are :

32 Discrete Wavelet Transforms: Algorithms and Applications
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Fig. 6. IDWT 5/3 (a) and 9/7 DFG (b)

• Read (R): The source operands from the on chip memory are sent to the register file. The
contro module gives an order to the reading file address generator integrated into the
control module for reading the row or column resource from the memory module (SRAM)
to the RPU at the address pointed to be by a read counter. Two data are read in one clock
cycle.

• Execution (E): The data available in the regiter file is used bythe data-path to process in
parallel the two parts of the filter. As the high pass filter part requires the previous result
of low pass filter part, the execution is delayed by one clock cylce for high pass filter results.
This operation is executed in one clock cycle.

• Writeback (W): The results of computation are written back to on chip memory at the
address pointed to by a write counter.

The figure7 illustrates the operating mode of the three stages pipeline. Because of sequential
acces to one memory bloc, the computations of the first level are performed as shown in (a)
allowing the exection of three operations in one clock cycle. For the remaining porcessing,
thanks to the parallel read, execute and write, six operations are executed in one clock cycle
(b).

33A Scalable Architecture for Discrete Wavelet Transform on FPGA-Based System
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Fig. 7. Pipeline organization: special case (a) and normal case(b)

4.3 Memory access

Seemless memory is make up of several fixed size blocks. Each block is a dual port memory
with simultaneous read-write access. Size of memory block correspond to image size in the
first level of transformation in the case of the iDWT (inverse DWT). In our experimentation we
choose an image of 32x32 pixels or bytes (we work on grey level pictures, that’s why a pixel is
constitued by one byte only). Because of this organisation, when the first level is proceded, the
two data paths of the processing elements are sequentially feeded, that require two memory
access cycles. However, for others, datas are read from (or ordered in) two different parallel
memory blocks for one processing element in parallel.

4.4 Detailed operations

To explain the operating details of the system, consider an original 8x8 image as shown in
figure 8-a. One of the task of this architecture is to rearrange the the pixels in the memory
bloc. In order to benefit from the parallelism, Data organizing mudule arranges the pixels as
shown in figure 8-b. So, due to the utilisation of memory bloc divided in four independent
dual port memories, the processing controller can reach, for a given i, Si and Di which are
normally two consecutive pixel in the image and those which we need to calculate at the same
time the two coefficient of the DWT. If we want to calculate two new samples at each clock
cycle, we have to reach two consecutive elements (Si and Di) at the same cycle.
So, in a first time, each processing element can calculate 1D-DWT in line. As we have two
element, the system can compute two 1D-DWT in the same time. In a second time, the system
computes the 1D-DWT, but now, in columns. Thus, we save a precious time and we can
theoretically achieve an infinite number of levels. Let be Tload, the needed time to fill a memory
bloc at the frequency of the data (it corresponds to the time of a complete reading or writing,
pixel after pixel, of the whole memory bloc), we can say that the execution time of the first

34 Discrete Wavelet Transforms: Algorithms and Applications
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Fig. 8. Original Image(a); Reorganized Image(b)

level is Tload
2 (we reach two pixels at one clock cycle, so, it divides by two Tload, we have two

PE that divides again by two Tload but we have to achieve two time the 1D-DWT. Finally the

execution time is of Tload
2 ). Moreover, we know that for the next level, we need only the low

frequency coefficients which represent only a quarter of the total result of the previous level.
The execution time is then the result of an arithmetic suite which is represented in equation 4.

Tn
exec = ∑ i = 1n 1

4i−1

Tload

2
(12)

If the number of level tends towards infinite, the execution time is then of 2∗Tload
3 . A data-out

unit allows getting back the DWT coefficients in an ordered way. This controller can be easily
modified to adapt the structure of the data flow to the system.

4.5 Target platform

In order to demonstrate the feasibility of the proposed FDWT/IDWT architecture, we have
implemented a reconfigurable architecture IDWT targeting an FPGA Xilinx from the Virtex
4 family. The virtex-4 circuit hold partial reconfiguration. Partial reconfiguration of Xilinx
FPGA’s is achieved using partial configuration datas Inc. (2004). The target architecture,
as shown as in the figure 9, is make up of static modules (PowerPC, ICAP, BRAM, PLB
Bus) and reconfigurable units(the scalable RPU and hierarchic on-chip memory). ICAP is
used to achieve the partial reconfiguration through the embeded processor PowerPC. The
reconfiguration datas are stocked in BRAM memory of FPGA and are loaded via ICAP.

5. Implementation results

We have modeled the architecture in HDL in the sofware suite ISE from Xilinx. The simulation
results agree with our theoretical waiting. Indeed, we can perform with this architecture
a very high number of levels. According to the simulation results, we can run a working
frequency of 67MHz. But as we use the internal memory of an FPGA, we are limited and we
can reach an image size of only 128x128 pixels. The solution consists of a small modification
of the data organizing units to allow the architecture to treat macro-bloc instead of a whole
picture.
Figure10 illustrates the placement and routing of one RPU on Xilinx Virtex-4 FPGA. Three
mains parts of system like: reconfigurable interface(middle bloc), four registre blocs and two
datapaths of IDWT algorithm. The configuration file of each is independant, which is named

35A Scalable Architecture for Discrete Wavelet Transform on FPGA-Based System
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Fig. 9. Target architecture.

Partial bitstreams RPU bitstream size(Kbyte) Reconfiguration time

Ko ms

static
part

582 Ko 21 sec (JTAG)

Partial bitstream 1 R_com_1 33Ko 0.57 ms

Partial bitstream 2 R_com_2 63Ko 0.67 ms

Partial bitstream 3 R_f_53 28Ko 0.26 ms

Partial bitstream 3 R_d_97 11Ko 0.16 ms

Table 2. Measured reconfiguration time of different bitstream files for 2-D IDWT.
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Fig. 10. placement and routing schema of DWT processing unit with Xilinx PlanAhead tool

as partial bitstreams. The different partial bitstreams are stored in the on chip BRAM. The
static bitstream is loaded using cable. To measure the execution time of each partial bitstream,
a free running hardware timer is used. The measurement results are in table 2. In this table,
the mains modules are : the different part between filter 5/3 and 9/7 ( R_d_97 ), 5/3 filter
functional module (R_f_53), interface for 5/3 filter (R_com_1) and: communication interface
for 9/7 filter (R_com_2).
The on chip PowerPC processor is used for autoconfiguration through HWICAP. As the
PowerPC is an element of the system, it is used to detect external or internal events and
accordingly loads automatically the adequate configuration to adapte the system to the given
situation and then making the auto-adaptive. The HWICAP makes auto-configuration easier,
in fact a C program on PowerPC allows the transfer of 512x32 bit blocks of the partial bitstream
from the configuration memory to a fixed size buffer of the HWICAP peripheral, which the
transfer from the buffer to the ICAP. The total reconfiguration time can approximated by the
following equation:

Tcon f ig = TICAP + TBRAM (13)

Where TICAP is the time required to transfer configuration from the buffer to the ICAP, and
TBRAM is the time required to transfer data from configuration memory to the HWICAP buffer.
Table 2 shows different parts of the system, the size of corresponding bitstream file and their
configuration time. The system consists of a static part and reconfigurable parts ( Part1 and
Part2 are the two versions of reconfigurable communication allowing the switching between

37A Scalable Architecture for Discrete Wavelet Transform on FPGA-Based System
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two filters, Part3 corresponds to 5/3 filter, and Part4 is the difference between 5/3 filter
and 9/7 filter ). The configuration time is measured using a free running counter (timer)
incremented every system clock cycle, and capturing the start time and the end time. We see
that the configuration time as expected depends linearly on the size of bitstream.

Type of
architecture

Resolution Area(mm2
for VLSI and
ASIC)(CLB for
FPGA)

Max frequency of
operation(MHz)

Memory
Requirement
(KB)

Proposed
architecture

32x32 153 CLBs 50 1.024

64x64 538 CLBs 50 4.960

ASICs
based(Tseng
et al., 2003)

one image
frame

8.796 mm2 50 2 memory frames

Zero-padding
scheme (et al,
2002)

32x32 4.26mm2 50 6.99

Table 3. Implementation results

To compare the measured configuration time with the minimum possible value, the value for
the reconfiguration of Virtex-4 FPGA could be obtained with this equation: Tcon f ig = L/r,
where L is the length of the configuration and r is the transfer rate. As an example, for a file of
63KB size, and a clock frequency of 100 MHz as used in our experimentation, the minimum
theoretical time is 0.63 ms, which is much less than 90 ms that as given in table 2. This is due to
PowerPC that acts as the configuration manager in our system. Large part of time is spent to
copy reconfiguration data from on chip or external memory to HWICAP buffer. The difference
between the measured configuration time (0.97 ms) and the computed time (0.63 ms) is due
to the imprecision of the measurement method. In fact, the capture of start and stop time is
achieved using software, which tacks additional clock cycles. In table 2 we can see also that
the main part of reconfiguration time is wasted for the transmission of reconfiguration files.
The reconfiguration time includes two part times: Tbram, the total load time for transferring
the reconfiguration bitstreams from memory on chip to buffer of ICAP with package
512byte. Ticap, the total configuration time through the ICAP port is grouped by the sum
of configuration time for one package. Hence, the reconfiguration time is decided largely
by the size of reconfiguration bit files and the number of reconfiguration bit files. The
reconfiguration manager makes possible to reduce the reconfiguration time through hiding
partial reconfiguration process in the execution process. It is obvious that the configuration
time can be improved. A solution we are studying is based on a specific hardware
reconfiguration manager capable to transfers the configuration data from on chip memory
to ICAP.
Moreover, the chart 3 compare our approach with the other architecture. We observe primary
two parameters based on different resolution of image. At the same working condition, the
area of DWT computing module is variety according to the size of image(153CLBs for 32x32
and 538CLBs for 64x64) where including the adding of memory requirement(1,024KB for
32x32 and 4,960KB for 64x64). Thus the area of circuit can be used efficiently according to
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the defnite size of image. The size of of memory requirment is scalable and thus the correcte
size of memory can be configured dynamically to adapt to the requirement of bandwidth
of memory. The other work shown in this table are based on ASIC(Tseng et al., 2003)and
VLSI (et al, 2002). the area of circuit and the size of memory are fixed and thus the maximum
size of memory must be previewered, which may lead to the urgent or surplus of memory
access.
This proposed architecture features small area and low momory requirments. Processing time
for a 32x32 image blocks is 43s which is lower than others traditional design. Using a 64X64
image blocks gives a good performance throughput which takes 86s for the transformation,
for two-level 2D IDWT, which is capable to perform the image CCIR(720X576) format image
signal at 50 f rame/s.

6. Conclusion

In this book chapter, , we have described auto-adaptive and reconfigurable hybrid architecture
for F/IDWT signal processing application. Two levels of auto adaptation are defined in
order to minimize the reconfiguration overhead. The application adaptive level in which
different applications of a domain are classified and characterized by a set of tasks. The task
adaptive level in which for a given task, a set of versions are defined and characterized for
use in a situation to adapt the application to different constraints like energy, and bandwidth
requirement.
The proposed architecture is a universal, scalable and flexible featuring two levels of
reconfiguration in order to enable the application adaptivity and task adaptivity. We
demonstrated through the case study that it can be used for any types of filters, any size
of image and any level of transformation. The memory is organized as a set of independent
memory blocks. Each memory block is a reconfigurable module. The high scalability of the
architecture is achieved through the flexibility and ease of choosing the number of memory
blocks and processing elements to match the desired resolution. The on-chip memory is used
not only to hold the source image, but also to store the temporary and final result. Hence, there
is no need of temporal memory. The processor has no instructions and then no decoder, in fact,
the hardware reconfigurable controller plays the role of a specific set of instructions and their
sequencing. For a given set of tasks, a set of configurations are generated at compile time and
loaded in run time by the configuration manager via configuration memory. The prototype
has been tested on FPGA developpment cart of Xilinx with 65nm CMOS technology. The
prototyping chip can be reconfigured to adapte 5/3 filter or 9/7 filter. In comparing with
others ASIC architecture at the same working frequency, our proposed architecture requires
less memory bloc and fewer hardware resource than the others.
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