2 research outputs found

    Uso eficiente de aritmética redundante en FPGAs

    Get PDF
    Hasta hace pocos años, la utilización de aritmética redundante en FPGAs había sido descartada por dos razones principalmente. En primer lugar, por el buen rendimiento que ofrecían los sumadores de acarreo propagado, gracias a la lógica de de acarreo que poseían de fábrica y al pequeño tamaño de los operandos en las aplicaciones típicas para FPGAs. En segundo lugar, el excesivo consumo de área que las herramientas de síntesis obtenían cuando mapeaban unidades que trabajan en carrysave. En este trabajo, se muestra que es posible la utilización de aritmética redundante carry-save en FPGAs de manera eficiente, consiguiendo un aumento en la velocidad de operación con un consumo de recursos razonable. Se ha introducido un nuevo formato redundante doble carry-save y se ha demostrado que la manera óptima para la realización de multiplicadores de elevado ancho de palabra es la combinación de multiplicadores empotrados con sumadores carry-save.Till a few years ago, redundant arithmetic had been discarded to be use in FPGA mainly for two reasons. First, the efficient results obtained using carry-propagate adders thanks to the carry-logic embedded in FPGAs and the small sizes of operands in typical FPGA applications. Second, the high number of resources that the synthesis tools utilizes to implement carry-save circuits. In this work, it is demonstrated that carry-save arithmetic can be efficiently used in FPGA, obtaining an important speed improvement with a reasonable area cost. A new redundant format, double carry-save, has been introduced, and the optimal implementation of large size multipliers has been shown based on embedded multipliers and carry-save adders

    Integrated Programmable-Array accelerator to design heterogeneous ultra-low power manycore architectures

    Get PDF
    There is an ever-increasing demand for energy efficiency (EE) in rapidly evolving Internet-of-Things end nodes. This pushes researchers and engineers to develop solutions that provide both Application-Specific Integrated Circuit-like EE and Field-Programmable Gate Array-like flexibility. One such solution is Coarse Grain Reconfigurable Array (CGRA). Over the past decades, CGRAs have evolved and are competing to become mainstream hardware accelerators, especially for accelerating Digital Signal Processing (DSP) applications. Due to the over-specialization of computing architectures, the focus is shifting towards fitting an extensive data representation range into fewer bits, e.g., a 32-bit space can represent a more extensive data range with floating-point (FP) representation than an integer representation. Computation using FP representation requires numerous encodings and leads to complex circuits for the FP operators, decreasing the EE of the entire system. This thesis presents the design of an EE ultra-low-power CGRA with native support for FP computation by leveraging an emerging paradigm of approximate computing called transprecision computing. We also present the contributions in the compilation toolchain and system-level integration of CGRA in a System-on-Chip, to envision the proposed CGRA as an EE hardware accelerator. Finally, an extensive set of experiments using real-world algorithms employed in near-sensor processing applications are performed, and results are compared with state-of-the-art (SoA) architectures. It is empirically shown that our proposed CGRA provides better results w.r.t. SoA architectures in terms of power, performance, and area
    corecore