89,854 research outputs found

    Color image segmentation using a self-initializing EM algorithm

    Get PDF
    This paper presents a new method based on the Expectation-Maximization (EM) algorithm that we apply for color image segmentation. Since this algorithm partitions the data based on an initial set of mixtures, the color segmentation provided by the EM algorithm is highly dependent on the starting condition (initialization stage). Usually the initialization procedure selects the color seeds randomly and often this procedure forces the EM algorithm to converge to numerous local minima and produce inappropriate results. In this paper we propose a simple and yet effective solution to initialize the EM algorithm with relevant color seeds. The resulting self initialised EM algorithm has been included in the development of an adaptive image segmentation scheme that has been applied to a large number of color images. The experimental data indicates that the refined initialization procedure leads to improved color segmentation

    Automatic segmentation of skin cancer images using adaptive color clustering

    Get PDF
    This paper presents the development of an adaptive image segmentation algorithm designed for the identification of the skin cancer and pigmented lesions in dermoscopy images. The key component of the developed algorithm is the Adaptive Spatial K-Means (A-SKM) clustering technique that is applied to extract the color features from skin cancer images. Adaptive-SKM is a novel technique that includes the primary features that describe the color smoothness and texture complexity in the process of pixel assignment. The A-SKM has been included in the development of a flexible color-texture image segmentation scheme and the experimental data indicates that the developed algorithm is able to produce accurate segmentation when applied to a large number of skin cancer (melanoma) images

    A New Framework for Color Image Segmentation Using Watershed Algorithm

    Get PDF
    Image segmentation and its performance evaluation are very difficult but important problems in computer vision. A major challenge in segmentation evaluation comes from the fundamental conflict between generality and objectivity. The goal of image segmentation is to cluster pixels into salient image regions, i.e., regions corresponding to individual surfaces, objects, or natural parts of objects. With the improvement of computer processing capabilities and the increased application of color image, researchers are more concerned about color image segmentation. Color image segmentation methods can be seen as an extension of the gray image segmentation method in the color images, but many of the original gray image segmentation methods cannot be directly applied to color images. This requires improving the method of original gray image segmentation method according to the color image which has the feature of rich information or research a new image segmentation method it specially used in color image segmentation. This paper proposes a color image segmentation method of automatic seed region growing on basis of the region with the combination of the watershed algorithm with seed region growing algorithm which based on the traditional seed region growing algorithm

    Color image segmentation using a spatial k-means clustering algorithm

    Get PDF
    This paper details the implementation of a new adaptive technique for color-texture segmentation that is a generalization of the standard K-Means algorithm. The standard K-Means algorithm produces accurate segmentation results only when applied to images defined by homogenous regions with respect to texture and color since no local constraints are applied to impose spatial continuity. In addition, the initialization of the K-Means algorithm is problematic and usually the initial cluster centers are randomly picked. In this paper we detail the implementation of a novel technique to select the dominant colors from the input image using the information from the color histograms. The main contribution of this work is the generalization of the K-Means algorithm that includes the primary features that describe the color smoothness and texture complexity in the process of pixel assignment. The resulting color segmentation scheme has been applied to a large number of natural images and the experimental data indicates the robustness of the new developed segmentation algorithm

    MMFO: modified moth flame optimization algorithm for region based RGB color image segmentation

    Get PDF
    Region-based color image segmentation is elementary steps in image processing and computer vision. Color image segmentation is a region growing approach in which RGB color image is divided into the different cluster based on their pixel properties. The region-based color image segmentation has faced the problem of multidimensionality. The color image is considered in five-dimensional problems, in which three dimensions in color (RGB) and two dimensions in geometry (luminosity layer and chromaticity layer). In this paper, L*a*b color space conversion has been used to reduce the one dimension and geometrically it converts in the array hence the further one dimension has been reduced. This paper introduced an improved algorithm MMFO (Modified Moth Flame Optimization) Algorithm for RGB color image Segmentation which is based on bio-inspired techniques for color image segmentation. The simulation results of MMFO for region based color image segmentation are performed better as compared to PSO and GA, in terms of computation times for all the images. The experiment results of this method gives clear segments based on the different color and the different no. of clusters is used during the segmentation process
    corecore