6 research outputs found

    Development of an ambient assisted living ecosystem

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de ComputadoresThe society that we live in faces today big demographic changes. Nowadays, peo-ple live longer, and it is expected that this trend will proceed. In 2000, there were already 420 million people with more than 65 years old, which correspond to about 7% of the world population. In 2050, it is expected that this number reaches 1500 million which corresponds to about 16% of the world population. Naturally, in these circumstances, the number of disabled people will increase as well. This context brings new challenges to the traditional health care systems in Portugal and in the rest of the world. There is an urgent need to search for new solutions that will allow people to live in the best possible way, in the latest stages of life. In order to fulfill this need, it is necessary to develop systems that allow to extend their life in their favorite environment, improving their safety, autonomy, mobility and welfare. Nowadays, information and communication technologies (ICT) offer new opportunities to provide care and assistance. Ambient Assisted Living (AAL), is such a paradigm, in which technology is used as a way to improve the independ-ence and welfare of aged or disabled people at their homes. This dissertation has the purpose of contributing to providing an answer to this necessity, associated to a development of an ecosystem for Ambient Assisted Living, associated to a business model and the search for the possibility of collabo-rative networks creation, in order to look for efficient and accessible solutions for AAL services provision

    The Global Care Ecosystems of 3D Printed Assistive Devices

    Full text link
    The popularity of 3D printed assistive technology has led to the emergence of new ecosystems of care, where multiple stakeholders (makers, clinicians, and recipients with disabilities) work toward creating new upper limb prosthetic devices. However, despite the increasing growth, we currently know little about the differences between these care ecosystems. Medical regulations and the prevailing culture have greatly impacted how ecosystems are structured and stakeholders work together, including whether clinicians and makers collaborate. To better understand these care ecosystems, we interviewed a range of stakeholders from multiple countries, including Brazil, Chile, Costa Rica, France, India, Mexico, and the U.S. Our broad analysis allowed us to uncover different working examples of how multiple stakeholders collaborate within these care ecosystems and the main challenges they face. Through our study, we were able to uncover that the ecosystems with multi-stakeholder collaborations exist (something prior work had not seen), and these ecosystems showed increased success and impact. We also identified some of the key follow-up practices to reduce device abandonment. Of particular importance are to have ecosystems put in place follow up practices that integrate formal agreements and compensations for participation (which do not need to be just monetary). We identified that these features helped to ensure multi-stakeholder involvement and ecosystem sustainability. We finished the paper with socio-technical recommendations to create vibrant care ecosystems that include multiple stakeholders in the production of 3D printed assistive devices

    Evolutionary Service Composition and Personalization Ecosystem for Elderly Care

    Get PDF
    Current demographic trends suggest that people are living longer, while the ageing process entails many necessities, calling for care services tailored to the individual senior’s needs and life style. Personalized provision of care services usually involves a number of stakeholders, including relatives, friends, caregivers, professional assistance organizations, enterprises, and other support entities. Traditional Information and Communication Technology based care and assistance services for the elderly have been mainly focused on the development of isolated and generic services, considering a single service provider, and excessively featuring a techno-centric approach. In contrast, advances on collaborative networks for elderly care suggest the integration of services from multiple providers, encouraging collaboration as a way to provide better personalized services. This approach requires a support system to manage the personalization process and allow ranking the {service, provider} pairs. An additional issue is the problem of service evolution, as individual’s care needs are not static over time. Consequently, the care services need to evolve accordingly to keep the elderly’s requirements satisfied. In accordance with these requirements, an Elderly Care Ecosystem (ECE) framework, a Service Composition and Personalization Environment (SCoPE), and a Service Evolution Environment (SEvol) are proposed. The ECE framework provides the context for the personalization and evolution methods. The SCoPE method is based on the match between the customer´s profile and the available {service, provider} pairs to identify suitable services and corresponding providers to attend the needs. SEvol is a method to build an adaptive and evolutionary system based on the MAPE-K methodology supporting the solution evolution to cope with the elderly's new life stages. To demonstrate the feasibility, utility and applicability of SCoPE and SEvol, a number of methods and algorithms are presented, and illustrative scenarios are introduced in which {service, provider} pairs are ranked based on a multidimensional assessment method. Composition strategies are based on customer’s profile and requirements, and the evolutionary solution is determined considering customer’s inputs and evolution plans. For the ECE evaluation process the following steps are adopted: (i) feature selection and software prototype development; (ii) detailing the ECE framework validation based on applicability and utility parameters; (iii) development of a case study illustrating a typical scenario involving an elderly and her care needs; and (iv) performing a survey based on a modified version of the technology acceptance model (TAM), considering three contexts: Technological, Organizational and Collaborative environment

    An environment to support negotiation and contracting in collaborative networks

    Get PDF
    During the last years, manufacturing and service industries faced a global change in the production paradigm. They have to continuously adapt their operating principles in reaction to new business or collaboration opportunities, where a natural reaction is a shift to a new business paradigm with the creation of strategic alliances for product or services development, but also for innovative and emergent business services design. On one hand, the process of creating such alliances can be rather simple if organizations share the same geographical and cultural context. But on the other hand, considering different conditions, there might be a low success rate in the creation of successful consortia. One known reason for such low rate are the delays resulting from negotiations in the establishment of collaboration commitments, represented by contracts or agreements, which are crucial in the creation of such alliances. The collaborative networks discipline covers the study of networks of organizations specially when supported by computer networks. This thesis contributes with research in this field describing the creation process of virtual organizations, and proposing a negotiation support environment to help participants in the negotiation of the consortia creation process and in the co-design of new business services. A negotiation support environment is therefore proposed and described with its main requirements, adopted negotiation protocol, conceptual architecture, models, and software environment. To demonstrate the feasibility of the implementation of the proposed systems, a proof-ofconcept software prototype was implemented and tested using some specific scenarios. This thesis work has been validated adopting a methodology that includes: (i) validation in the research community; (ii) validation in a solar industry network; and (iii) validation by comparison analysis

    C-EMO: A Modeling Framework for Collaborative Network Emotions

    Get PDF
    Recent research in the area of collaborative networks is focusing on the social and organizational complexity of collaboration environments as a way to prevent technological failures and consequently contribute for the collaborative network’s sustainability. One direction is moving towards the need to provide “human-tech” friendly systems with cognitive models of human factors such as stress, emotion, trust, leadership, expertise or decision-making ability. In this context, an emotion-based system is being proposed with this thesis in order to bring another approach to avoid collaboration network’s failures and help in the management of conflicts. This approach, which is expected to improve the performance of existing CNs, adopts some of the models developed in the human psychology, sociology and affective computing areas. The underlying idea is to “borrow” the concept of human-emotion and apply it into the context of CNs, giving the CN players the ability to “feel emotions”. Therefore, this thesis contributes with a modeling framework that conceptualizes the notion of “emotion” in CNs and a methodology approach based on system dynamics and agent-based techniques that estimates the CN player’s “emotional states” giving support to decision-making processes. Aiming at demonstrating the appropriateness of the proposed framework a simulation prototype was implemented and a validation approach was proposed consisting of simulation of scenarios, qualitative assessment and validation by research community peers.Recentemente a área de investigação das redes colaborativas tem vindo a debruçar-se na complexidade social e organizacional em ambientes colaborativos e como pode ser usada para prevenir falhas tecnológicas e consequentemente contribuir para redes colaborativas sustentáveis. Uma das direcções de estudo assenta na necessidade de fornecer sistemas amigáveis “humano-tecnológicos” com modelos cognitivos de factores humanos como o stress, emoção, confiança, liderança ou capacidade de tomada de decisão. É neste contexto que esta tese propõe um sistema baseado em emoções com o objectivo de oferecer outra aproximação para a gestão de conflitos e falhas da rede de colaboração. Esta abordagem, que pressupõe melhorar o desempenho das redes existentes, adopta alguns dos modelos desenvolvidos nas áreas da psicologia humana, sociologia e affective computing. A ideia que está subjacente é a de “pedir emprestado” o conceito de emoção humana e aplicá-lo no contexto das redes colaborativas, dando aos seus intervenientes a capacidade de “sentir emoções”. Assim, esta tese contribui com uma framework de modelação que conceptualiza a noção de “emoção” em redes colaborativas e com uma aproximação de metodologia sustentada em sistemas dinâmicos e baseada em agentes que estimam os “estados emocionais” dos participantes e da própria rede colaborativa. De forma a demonstrar o nível de adequabilidade da framework de modelação proposta, foi implementado um protótipo de simulação e foi proposta uma abordagem de validação consistindo em simulação de cenários, avaliação qualitativa e validação pelos pares da comunidade científica

    A Collaborative Services Ecosystem for Ambient Assisted Living

    No full text
    Part 5: Collaborative EcosystemsInternational audienceA conceptual architecture for ambient assisted living is introduced as a contribution to the development of an ecosystem of products and services supporting active ageing. In order to facilitate understanding and better inter-relate concepts, a 3-layered model is adopted: Infrastructure layer, Care and assistance services layer, and AAL ecosystem layer. A holistic perspective of ambient assisted living, namely considering four important life settings is adopted: (i) Independent living; (ii) Health and care in life; (iii) Occupation in life; and (iv) Recreation in life
    corecore