10,249 research outputs found

    Explainable Software Bot Contributions: Case Study of Automated Bug Fixes

    Full text link
    In a software project, esp. in open-source, a contribution is a valuable piece of work made to the project: writing code, reporting bugs, translating, improving documentation, creating graphics, etc. We are now at the beginning of an exciting era where software bots will make contributions that are of similar nature than those by humans. Dry contributions, with no explanation, are often ignored or rejected, because the contribution is not understandable per se, because they are not put into a larger context, because they are not grounded on idioms shared by the core community of developers. We have been operating a program repair bot called Repairnator for 2 years and noticed the problem of "dry patches": a patch that does not say which bug it fixes, or that does not explain the effects of the patch on the system. We envision program repair systems that produce an "explainable bug fix": an integrated package of at least 1) a patch, 2) its explanation in natural or controlled language, and 3) a highlight of the behavioral difference with examples. In this paper, we generalize and suggest that software bot contributions must explainable, that they must be put into the context of the global software development conversation

    The Abertay Code Bar – unlocking access to university-generated computer games intellectual poperty

    Get PDF
    Progress report on a digital platform and dual licensing model developed to unlock access to a University repository of new and legacy computer games based Intellectual Property (IP) assets for educational and commercial use. The digital creative industries have been identified by a number of governments as a priority area in delivering sustainable economic growth. Code Bar is an innovation that allows digital products to be commercially successful beyond the end of the Dare competition or coursework submission. To be selected for Code Bar, game products must be well designed for both player and market; technically robust (i.e. operating consistently and reliably on a single/multiple platforms), and be free from ambiguity around 3rd party IP. We describe various technical, pedagogic and legal challenges in developing the digital platform, licensing model and packaging of computer games products for release through the platform. The model is extendable beyond computer games to other software products

    Summary of the First Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE1)

    Get PDF
    Challenges related to development, deployment, and maintenance of reusable software for science are becoming a growing concern. Many scientists’ research increasingly depends on the quality and availability of software upon which their works are built. To highlight some of these issues and share experiences, the First Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE1) was held in November 2013 in conjunction with the SC13 Conference. The workshop featured keynote presentations and a large number (54) of solicited extended abstracts that were grouped into three themes and presented via panels. A set of collaborative notes of the presentations and discussion was taken during the workshop. Unique perspectives were captured about issues such as comprehensive documentation, development and deployment practices, software licenses and career paths for developers. Attribution systems that account for evidence of software contribution and impact were also discussed. These include mechanisms such as Digital Object Identifiers, publication of “software papers”, and the use of online systems, for example source code repositories like GitHub. This paper summarizes the issues and shared experiences that were discussed, including cross-cutting issues and use cases. It joins a nascent literature seeking to understand what drives software work in science, and how it is impacted by the reward systems of science. These incentives can determine the extent to which developers are motivated to build software for the long-term, for the use of others, and whether to work collaboratively or separately. It also explores community building, leadership, and dynamics in relation to successful scientific software

    Empirical research on the evaluation model and method of sustainability of the open source ecosystem

    Get PDF
    The development of open source brings new thinking and production modes to software engineering and computer science, and establishes a software development method and ecological environment in which groups participate. Regardless of investors, developers, participants, and managers, they are most concerned about whether the Open Source Ecosystem can be sustainable to ensure that the ecosystem they choose will serve users for a long time. Moreover, the most important quality of the software ecosystem is sustainability, and it is also a research area in Symmetry. Therefore, it is significant to assess the sustainability of the Open Source Ecosystem. However, the current measurement of the sustainability of the Open Source Ecosystem lacks universal measurement indicators, as well as a method and a model. Therefore, this paper constructs an Evaluation Indicators System, which consists of three levels: The target level, the guideline level and the evaluation level, and takes openness, stability, activity, and extensibility as measurement indicators. On this basis, a weight calculation method, based on information contribution values and a Sustainability Assessment Model, is proposed. The models and methods are used to analyze the factors affecting the sustainability of Stack Overflow (SO) ecosystem. Through the analysis, we find that every indicator in the SO ecosystem is partaking in different development trends. The development trend of a single indicator does not represent the sustainable development trend of the whole ecosystem. It is necessary to consider all of the indicators to judge that ecosystem’s sustainability. The research on the sustainability of the Open Source Ecosystem is helpful for judging software health, measuring development efficiency and adjusting organizational structure. It also provides a reference for researchers who study the sustainability of software engineering
    • …
    corecore