2,178,598 research outputs found

    New binary and ternary LCD codes

    Get PDF
    LCD codes are linear codes with important cryptographic applications. Recently, a method has been presented to transform any linear code into an LCD code with the same parameters when it is supported on a finite field with cardinality larger than 3. Hence, the study of LCD codes is mainly open for binary and ternary fields. Subfield-subcodes of JJ-affine variety codes are a generalization of BCH codes which have been successfully used for constructing good quantum codes. We describe binary and ternary LCD codes constructed as subfield-subcodes of JJ-affine variety codes and provide some new and good LCD codes coming from this construction

    Quantum Synchronizable Codes From Quadratic Residue Codes and Their Supercodes

    Full text link
    Quantum synchronizable codes are quantum error-correcting codes designed to correct the effects of both quantum noise and block synchronization errors. While it is known that quantum synchronizable codes can be constructed from cyclic codes that satisfy special properties, only a few classes of cyclic codes have been proved to give promising quantum synchronizable codes. In this paper, using quadratic residue codes and their supercodes, we give a simple construction for quantum synchronizable codes whose synchronization capabilities attain the upper bound. The method is applicable to cyclic codes of prime length

    Decoding of Convolutional Codes over the Erasure Channel

    Full text link
    In this paper we study the decoding capabilities of convolutional codes over the erasure channel. Of special interest will be maximum distance profile (MDP) convolutional codes. These are codes which have a maximum possible column distance increase. We show how this strong minimum distance condition of MDP convolutional codes help us to solve error situations that maximum distance separable (MDS) block codes fail to solve. Towards this goal, we define two subclasses of MDP codes: reverse-MDP convolutional codes and complete-MDP convolutional codes. Reverse-MDP codes have the capability to recover a maximum number of erasures using an algorithm which runs backward in time. Complete-MDP convolutional codes are both MDP and reverse-MDP codes. They are capable to recover the state of the decoder under the mildest condition. We show that complete-MDP convolutional codes perform in certain sense better than MDS block codes of the same rate over the erasure channel.Comment: 18 pages, 3 figures, to appear on IEEE Transactions on Information Theor

    Affine Cartesian codes with complementary duals

    Full text link
    A linear code CC with the property that CC={0}C \cap C^{\perp} = \{0 \} is said to be a linear complementary dual, or LCD, code. In this paper, we consider generalized affine Cartesian codes which are LCD. Generalized affine Cartesian codes arise naturally as the duals of affine Cartesian codes in the same way that generalized Reed-Solomon codes arise as duals of Reed-Solomon codes. Generalized affine Cartesian codes are evaluation codes constructed by evaluating multivariate polynomials of bounded degree at points in mm-dimensional Cartesian set over a finite field KK and scaling the coordinates. The LCD property depends on the scalars used. Because Reed-Solomon codes are a special case, we obtain a characterization of those generalized Reed-Solomon codes which are LCD along with the more general result for generalized affine Cartesian codes

    Estimates on the Size of Symbol Weight Codes

    Full text link
    The study of codes for powerlines communication has garnered much interest over the past decade. Various types of codes such as permutation codes, frequency permutation arrays, and constant composition codes have been proposed over the years. In this work we study a type of code called the bounded symbol weight codes which was first introduced by Versfeld et al. in 2005, and a related family of codes that we term constant symbol weight codes. We provide new upper and lower bounds on the size of bounded symbol weight and constant symbol weight codes. We also give direct and recursive constructions of codes for certain parameters.Comment: 14 pages, 4 figure

    General Linearized Polynomial Interpolation and Its Applications

    Full text link
    In this paper, we first propose a general interpolation algorithm in a free module of a linearized polynomial ring, and then apply this algorithm to decode several important families of codes, Gabidulin codes, KK codes and MV codes. Our decoding algorithm for Gabidulin codes is different from the polynomial reconstruction algorithm by Loidreau. When applied to decode KK codes, our interpolation algorithm is equivalent to the Sudan-style list-1 decoding algorithm proposed by K/"otter and Kschischang for KK codes. The general interpolation approach is also capable of solving the interpolation problem for the list decoding of MV codes proposed by Mahdavifar and Vardy, and has a lower complexity than solving linear equations

    QPSK Block-Modulation Codes for Unequal Error Protection

    Get PDF
    Unequal error protection (UEP) codes find applications in broadcast channels, as well as in other digital communication systems, where messages have different degrees of importance. Binary linear UEP (LUEP) codes combined with a Gray mapped QPSK signal set are used to obtain new efficient QPSK block-modulation codes for unequal error protection. Several examples of QPSK modulation codes that have the same minimum squared Euclidean distance as the best QPSK modulation codes, of the same rate and length, are given. In the new constructions of QPSK block-modulation codes, even-length binary LUEP codes are used. Good even-length binary LUEP codes are obtained when shorter binary linear codes are combined using either the well-known |u¯|u¯+v¯|-construction or the so-called construction X. Both constructions have the advantage of resulting in optimal or near-optimal binary LUEP codes of short to moderate lengths, using very simple linear codes, and may be used as constituent codes in the new constructions. LUEP codes lend themselves quite naturally to multistage decoding up to their minimum distance, using the decoding of component subcodes. A new suboptimal two-stage soft-decision decoding of LUEP codes is presented and its application to QPSK block-modulation codes for UEP illustrated
    corecore