5,806 research outputs found

    Context-awareness for mobile sensing: a survey and future directions

    Get PDF
    The evolution of smartphones together with increasing computational power have empowered developers to create innovative context-aware applications for recognizing user related social and cognitive activities in any situation and at any location. The existence and awareness of the context provides the capability of being conscious of physical environments or situations around mobile device users. This allows network services to respond proactively and intelligently based on such awareness. The key idea behind context-aware applications is to encourage users to collect, analyze and share local sensory knowledge in the purpose for a large scale community use by creating a smart network. The desired network is capable of making autonomous logical decisions to actuate environmental objects, and also assist individuals. However, many open challenges remain, which are mostly arisen due to the middleware services provided in mobile devices have limited resources in terms of power, memory and bandwidth. Thus, it becomes critically important to study how the drawbacks can be elaborated and resolved, and at the same time better understand the opportunities for the research community to contribute to the context-awareness. To this end, this paper surveys the literature over the period of 1991-2014 from the emerging concepts to applications of context-awareness in mobile platforms by providing up-to-date research and future research directions. Moreover, it points out the challenges faced in this regard and enlighten them by proposing possible solutions

    Model-Based Dynamic Resource Management for Service Oriented Clouds

    Get PDF
    Cloud computing is a flexible platform for software as a service, as more and more applications are deployed on cloud. Major challenges in cloud include how to characterize the workload of the applications and how to manage the cloud resources efficiently by sharing them among many applications. The current state of the art considers a simplified model of the system, either ignoring the software components altogether or ignoring the relationship between individual software services. This thesis considers the following resource management problems for cloud-based service providers: (i) how to estimate the parameters of the current workload, (ii) how to meet Quality of Service (QoS) targets while minimizing infrastructure cost, (iii) how to allocate resources considering performance costs of virtual machine reconfigurations. To address the above problems, we propose a model-based feedback loop approach. The cloud infrastructure, the services, and the applications are modelled using Layered Queuing Models (LQM). These models are then optimized. Mathematical techniques are used to reduce the complexity of the models and address the scalability issues. The main contributions of this thesis are: (i) Extended Kalman Filter (EKF) based techniques improved by dynamic clustering for scalable estimation of workload parameters, (ii) combination of adaptive empirical models (tuned during runtime) and stepwise optimizations for improving the overall allocation performance, (iii) dynamic service placement algorithms that consider the cost of virtual machine reconfiguration

    Investigations into Elasticity in Cloud Computing

    Full text link
    The pay-as-you-go model supported by existing cloud infrastructure providers is appealing to most application service providers to deliver their applications in the cloud. Within this context, elasticity of applications has become one of the most important features in cloud computing. This elasticity enables real-time acquisition/release of compute resources to meet application performance demands. In this thesis we investigate the problem of delivering cost-effective elasticity services for cloud applications. Traditionally, the application level elasticity addresses the question of how to scale applications up and down to meet their performance requirements, but does not adequately address issues relating to minimising the costs of using the service. With this current limitation in mind, we propose a scaling approach that makes use of cost-aware criteria to detect the bottlenecks within multi-tier cloud applications, and scale these applications only at bottleneck tiers to reduce the costs incurred by consuming cloud infrastructure resources. Our approach is generic for a wide class of multi-tier applications, and we demonstrate its effectiveness by studying the behaviour of an example electronic commerce site application. Furthermore, we consider the characteristics of the algorithm for implementing the business logic of cloud applications, and investigate the elasticity at the algorithm level: when dealing with large-scale data under resource and time constraints, the algorithm's output should be elastic with respect to the resource consumed. We propose a novel framework to guide the development of elastic algorithms that adapt to the available budget while guaranteeing the quality of output result, e.g. prediction accuracy for classification tasks, improves monotonically with the used budget.Comment: 211 pages, 27 tables, 75 figure

    Contextual Ranking of Database Query Results

    Get PDF
    • …
    corecore