57,596 research outputs found

    Load Balancing and Virtual Machine Allocation in Cloud-based Data Centers

    Get PDF
    As cloud services see an exponential increase in consumers, the demand for faster processing of data and a reliable delivery of services becomes a pressing concern. This puts a lot of pressure on the cloud-based data centers, where the consumers’ data is stored, processed and serviced. The rising demand for high quality services and the constrained environment, make load balancing within the cloud data centers a vital concern. This project aims to achieve load balancing within the data centers by means of implementing a Virtual Machine allocation policy, based on consensus algorithm technique. The cloud-based data center system, consisting of Virtual Machines has been simulated on CloudSim – a Java based cloud simulator

    On distributed virtual network embedding with guarantees

    Full text link
    To provide wide-area network services, resources from different infrastructure providers are needed. Leveraging the consensus-based resource allocation literature, we propose a general distributed auction mechanism for the (NP-hard) virtual network (VNET) embedding problem. Under reasonable assumptions on the bidding scheme, the proposed mechanism is proven to converge, and it is shown that the solutions guarantee a worst case efficiency of (?????) relative to the optimal solution, and that this bound is optimal, that is, no better approximation exists. Using extensive simulations, we confirm superior convergence properties and resource utilization when compared with existing distributed VNET embedding solutions, and we show how byappropriate policy design, our mechanism can be instantiated to accommodate the embedding goals of different service and infrastructure providers, resulting in an attractive and flexible resource allocation solution.This work is supported in part by the National Science Foundation under grant CNS-0963974

    On distributed virtual network embedding with guarantees

    Full text link
    To provide wide-area network services, resources from different infrastructure providers are needed. Leveraging the consensus-based resource allocation literature, we propose a general distributed auction mechanism for the (NP-hard) virtual network (VNET) embedding problem. Under reasonable assumptions on the bidding scheme, the proposed mechanism is proven to converge, and it is shown that the solutions guarantee a worst case efficiency of (?????) relative to the optimal solution, and that this bound is optimal, that is, no better approximation exists. Using extensive simulations, we confirm superior convergence properties and resource utilization when compared with existing distributed VNET embedding solutions, and we show how byappropriate policy design, our mechanism can be instantiated to accommodate the embedding goals of different service and infrastructure providers, resulting in an attractive and flexible resource allocation solution.This work is supported in part by the National Science Foundation under grant CNS-0963974

    On distributed virtual network embedding with guarantees

    Full text link
    To provide wide-area network services, resources from different infrastructure providers are needed. Leveraging the consensus-based resource allocation literature, we propose a general distributed auction mechanism for the (NP-hard) virtual network (VNET) embedding problem. Under reasonable assumptions on the bidding scheme, the proposed mechanism is proven to converge, and it is shown that the solutions guarantee a worst-case efficiency of (1-(1/e)) relative to the optimal node embedding, or VNET embedding if virtual links are mapped to exactly one physical link. This bound is optimal, that is, no better polynomial-time approximation algorithm exists, unless P=NP. Using extensive simulations, we confirm superior convergence properties and resource utilization when compared to existing distributed VNET embedding solutions, and we show how by appropriate policy design, our mechanism can be instantiated to accommodate the embedding goals of different service and infrastructure providers, resulting in an attractive and flexible resource allocation solution.CNS-0963974 - National Science Foundationhttp://www.cs.bu.edu/fac/matta/Papers/ToN-CAD.pdfAccepted manuscrip

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial
    • …
    corecore