60 research outputs found

    Live User-guided Intrinsic Video For Static Scenes

    Get PDF
    We present a novel real-time approach for user-guided intrinsic decomposition of static scenes captured by an RGB-D sensor. In the first step, we acquire a three-dimensional representation of the scene using a dense volumetric reconstruction framework. The obtained reconstruction serves as a proxy to densely fuse reflectance estimates and to store user-provided constraints in three-dimensional space. User constraints, in the form of constant shading and reflectance strokes, can be placed directly on the real-world geometry using an intuitive touch-based interaction metaphor, or using interactive mouse strokes. Fusing the decomposition results and constraints in three-dimensional space allows for robust propagation of this information to novel views by re-projection.We leverage this information to improve on the decomposition quality of existing intrinsic video decomposition techniques by further constraining the ill-posed decomposition problem. In addition to improved decomposition quality, we show a variety of live augmented reality applications such as recoloring of objects, relighting of scenes and editing of material appearance

    CNN based Learning using Reflection and Retinex Models for Intrinsic Image Decomposition

    Get PDF
    Most of the traditional work on intrinsic image decomposition rely on deriving priors about scene characteristics. On the other hand, recent research use deep learning models as in-and-out black box and do not consider the well-established, traditional image formation process as the basis of their intrinsic learning process. As a consequence, although current deep learning approaches show superior performance when considering quantitative benchmark results, traditional approaches are still dominant in achieving high qualitative results. In this paper, the aim is to exploit the best of the two worlds. A method is proposed that (1) is empowered by deep learning capabilities, (2) considers a physics-based reflection model to steer the learning process, and (3) exploits the traditional approach to obtain intrinsic images by exploiting reflectance and shading gradient information. The proposed model is fast to compute and allows for the integration of all intrinsic components. To train the new model, an object centered large-scale datasets with intrinsic ground-truth images are created. The evaluation results demonstrate that the new model outperforms existing methods. Visual inspection shows that the image formation loss function augments color reproduction and the use of gradient information produces sharper edges. Datasets, models and higher resolution images are available at https://ivi.fnwi.uva.nl/cv/retinet.Comment: CVPR 201

    Intrinsic Image Transfer for Illumination Manipulation

    Full text link
    This paper presents a novel intrinsic image transfer (IIT) algorithm for illumination manipulation, which creates a local image translation between two illumination surfaces. This model is built on an optimization-based framework consisting of three photo-realistic losses defined on the sub-layers factorized by an intrinsic image decomposition. We illustrate that all losses can be reduced without the necessity of taking an intrinsic image decomposition under the well-known spatial-varying illumination illumination-invariant reflectance prior knowledge. Moreover, with a series of relaxations, all of them can be directly defined on images, giving a closed-form solution for image illumination manipulation. This new paradigm differs from the prevailing Retinex-based algorithms, as it provides an implicit way to deal with the per-pixel image illumination. We finally demonstrate its versatility and benefits to the illumination-related tasks such as illumination compensation, image enhancement, and high dynamic range (HDR) image compression, and show the high-quality results on natural image datasets

    CGIntrinsics: Better Intrinsic Image Decomposition through Physically-Based Rendering

    Full text link
    Intrinsic image decomposition is a challenging, long-standing computer vision problem for which ground truth data is very difficult to acquire. We explore the use of synthetic data for training CNN-based intrinsic image decomposition models, then applying these learned models to real-world images. To that end, we present \ICG, a new, large-scale dataset of physically-based rendered images of scenes with full ground truth decompositions. The rendering process we use is carefully designed to yield high-quality, realistic images, which we find to be crucial for this problem domain. We also propose a new end-to-end training method that learns better decompositions by leveraging \ICG, and optionally IIW and SAW, two recent datasets of sparse annotations on real-world images. Surprisingly, we find that a decomposition network trained solely on our synthetic data outperforms the state-of-the-art on both IIW and SAW, and performance improves even further when IIW and SAW data is added during training. Our work demonstrates the suprising effectiveness of carefully-rendered synthetic data for the intrinsic images task.Comment: Paper for 'CGIntrinsics: Better Intrinsic Image Decomposition through Physically-Based Rendering' published in ECCV, 201
    corecore