441,392 research outputs found

    Finding a boundary between valid and invalid regions of the input space

    Full text link
    In the context of robustness testing, the boundary between the valid and invalid regions of the input space can be an interesting source of erroneous inputs. Knowing where a specific software under test (SUT) has a boundary is essential for validation in relation to requirements. However, finding where a SUT actually implements the boundary is a non-trivial problem that has not gotten much attention. This paper proposes a method of finding the boundary between the valid and invalid regions of the input space. The proposed method consists of two steps. First, test data generators, directed by a search algorithm to maximise distance to known, valid test cases, generate valid test cases that are closer to the boundary. Second, these valid test cases undergo mutations to try to push them over the boundary and into the invalid part of the input space. This results in a pair of test sets, one consisting of test cases on the valid side of the boundary and a matched set on the outer side, with only a small distance between the two sets. The method is evaluated on a number of examples from the standard library of a modern programming language. We propose a method of determining the boundary between valid and invalid regions of the input space and apply it on a SUT that has a non-contiguous valid region of the input space. From the small distance between the developed pairs of test sets, and the fact that one test set contains valid test cases and the other invalid test cases, we conclude that the pair of test sets described the boundary between the valid and invalid regions of that input space. Differences of behaviour can be observed between different distances and sets of mutation operators, but all show that the method is able to identify the boundary between the valid and invalid regions of the input space. This is an important step towards more automated robustness testing.Comment: 10 pages, conferenc

    Interactively Test Driving an Object Detector: Estimating Performance on Unlabeled Data

    Full text link
    In this paper, we study the problem of `test-driving' a detector, i.e. allowing a human user to get a quick sense of how well the detector generalizes to their specific requirement. To this end, we present the first system that estimates detector performance interactively without extensive ground truthing using a human in the loop. We approach this as a problem of estimating proportions and show that it is possible to make accurate inferences on the proportion of classes or groups within a large data collection by observing only 5βˆ’10%5-10\% of samples from the data. In estimating the false detections (for precision), the samples are chosen carefully such that the overall characteristics of the data collection are preserved. Next, inspired by its use in estimating disease propagation we apply pooled testing approaches to estimate missed detections (for recall) from the dataset. The estimates thus obtained are close to the ones obtained using ground truth, thus reducing the need for extensive labeling which is expensive and time consuming.Comment: Published at Winter Conference on Applications of Computer Vision, 201
    • …
    corecore