
Open Research Online
The Open University’s repository of research publications
and other research outputs

Scientists and software engineers: A tale of two
cultures
Conference or Workshop Item
How to cite:

Segal, Judith (2008). Scientists and software engineers: A tale of two cultures. In: PPIG 2008: Proceedings
of the 20th Annual Meeting of the Pschology of Programming Interest Group (Buckley, Jim; Rooksby, John and
Bednarik, Roman eds.), Lancaster University, Lancaster, UK.

For guidance on citations see FAQs.

c© [not recorded]

Version: [not recorded]

Link(s) to article on publisher’s website:
http://www.cs.st-andrews.ac.uk/ jr/ppig08/index.html

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/84342118?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://www.cs.st-andrews.ac.uk/~jr/ppig08/index.html
http://oro.open.ac.uk/policies.html

PPIG, Lancaster 2008 www.ppig.org

Scientists and software engineers: a tale of two cultures

Judith Segal

Department of Computing
The Open University
j.a.segal@open.ac.uk

Keywords: POP-I C. Ill-defined problems, POP-II A end-users, POP –II C working practices, POP-V B, case
studies

Abstract
The two cultures of the title are those observed in my field studies: the culture of scientists (financial
mathematicians, earth and planetary scientists, and molecular biologists) developing their own
software, and the culture of software engineers developing scientific software. In this paper, I shall
describe some problems arising when scientists and software engineers come together to develop
scientific software and discuss how these problems may be ascribed to their two different cultures.

1. Introduction
One major difference between most commercial software development and scientific software
development lies in the complexity of the domain. Most software engineers have some intuition as to
what is required from (for example) a hotel booking system or a banking system or a payroll system;
few have any intuition as to what is required from (for example) a stochastic modelling system or a
quantum chemistry system or a protein crystallography system. The implication of this is that the
relevant scientists must be deeply engaged in the system development, either developing it themselves
in their role of ‘professional end-user developers’ (see below), or in providing (and explaining)
requirements, giving feedback and performing user-acceptance tests.

Before I go any further, I shall define my use of the terms ‘professional end-user developers’ and
‘culture’. The term ‘professional end-user developers’ (Segal, 2007) refers to people such as
scientists and engineers working in highly technical, knowledge-rich domains who develop software
in order to further their own professional goals and/or those of their close colleagues. Like other end-
user developers, these people do not regard themselves primarily as software developers and have
little or no education or training in software engineering. Unlike most other end-user developers,
however, coding per se presents them with few problems as they are used to formal languages.
Turning to the term ‘culture’, the concept of culture has many aspects. In this paper, I take the term to
mean the set of values and customary behaviours of an identifiable group of people, professional end-
user developers and software engineers in this case.

This paper draws on field studies I have undertaken with financial mathematicians, earth and
planetary scientists, space scientists and molecular biologists. In section 2, I shall describe the culture
within which I have observed scientists developing software for their own use and/or for the use of
their close colleagues, and present a model of how this software is developed, a professional end-user
development model. In section 3, I shall describe two sets of problems which I observed when
software engineers worked closely with scientists in order to develop scientific software, and which
arise from a cultural mismatch. In the first case, software engineers tried to impose a traditional
software engineering culture on scientists. In the second, scientists expected software engineers to
ascribe to the culture of professional end-user development. In section 4, I shall discuss the
limitations of my field studies. Although my field studies have explored quite a variety of contexts,
they are in no way comprehensive. I discuss whether other software development models would fit
better with scientific software development than the traditional phased waterfall model that I

 2

PPIG, Lancaster 2008 www.ppig.org

observed, and also whether the characteristics of the culture described in section 2 are common across
all contexts of scientists developing scientific software. Section 5 consists of a summary and
conclusions.

2. The culture of professional end-user development

2.1. Values

As described in Segal, 2007, the most salient characteristic of the culture I saw in my field studies of
financial mathematicians and earth and planetary scientists, was the low value ascribed to software
development knowledge and skill compared with knowledge of the mathematical/scientific domain.
People spoke in terms of ‘everybody’ knowing how to develop software; of software development
knowledge being merely part of the armoury of the average scientist; of the belief that a piece of
software was something that could be dashed off during a lunch hour.

In these two contexts of financial mathematics and earth and planetary science, software development
is something one practises at the beginning of one’s professional career. As one ascends the career
ladder (by passing one’s professional exams or by publishing enough scientific papers), then one
leaves software development behind to be done by one’s juniors. The situation in which this is not the
case, that is, in which a professional end-user developer – or, indeed, a software engineer working
within a professional end-user organisation – develops software full-time on a long-term basis, does
not appear to differ significantly in the low value afforded by the organisation to software
development knowledge and skill. My current field study of molecular biologists includes several
interviews with a professional end-user developer whose skill in software development had been
recognised during his PhD work in molecular biology and who is now working full time developing
and maintaining software for his lab. Although this software is the absolute sine qua non of the lab –
without the software, there would be no lab – this man feels that there is no way someone in his
position could ever become head of such a lab. His belief is that such a position would always go to a
traditional bench biologist, despite the fact that traditional bench biology now plays a relatively small
part in the work of the lab. I also talked with a software engineer who works for a central government
research facility with the express aim of providing software support for the UK scientific community.
The management of this facility consists of professional end-user developers, people who primarily
consider themselves to be scientists. The developer constantly finds his promotion blocked because
he has not published enough scientific papers – this despite the fact that software development, and
not writing scientific papers, is his remit. The developer feels that the facility’s management do not
understand, and cannot judge, professional software development (as opposed to professional end-
user development). He feels that the concerns and quality goals of the former are quite different from
those of the latter. This is a point to which I shall return briefly in section 3.2 below.

The low value ascribed to software development knowledge and skills no doubt contributes to the
difficulties that professional end-user developers have in acquiring such knowledge and skills as
described in Segal, 2007, despite the fact that it is assumed that ‘everybody’ knows what to do, as
above. Professional end-user developers have rarely had any formal software engineering education
at university. However, the same is true of many software engineers, and in fact, Kelly, 2007, notes
that university software engineering courses are frequently unpopular with potential professional end-
user developers since they are often taught in a way which is independent of the domain and the
students are unable to make links between the software engineering as taught and their chosen
science.

What is more important than formal education, I think, are the learning opportunities afforded by the
community of practice. My interviews indicate that software engineers acquire their knowledge and
skills through a variety of means, all dependent on their being part of a community (or network) of
practice of software developers. These means include working with a variety of other developers on a
variety of projects and thus sharing knowledge on an informal basis, reading books and studying
internet tutorials etcetera as recommended by colleagues, and going to technical conferences and short
courses, the existence of which is made known through the network of practice. For the professional
end-user developer observed in my field studies, this community of software development

 3

PPIG, Lancaster 2008 www.ppig.org

practitioners does not exist. The primary community of practice to which the professional end-user
developer belongs is that of the application domain, the science. Professional end-user developers
often work on their own or in very small groups and so rarely have the opportunity to share
knowledge informally. In at least one of my field studies, the perception that software development
knowledge is trivial and known to everyone, meant that the management was loath to spend money on
resources, such as courses, designed to improve such knowledge.

2.2. Behaviours: a model of professional end-user development

Figure 1 is, I suggest, the standard model of professional end-user development. I found it practised
by all the professional end-user developers in my field studies. And a casual conversation on a train
with a computational linguist elicited the information that he recognised it as the model he used in
writing his latest substantial program in Python in order to analyse the dialogues of Plato.

In this model, the developer begins with just a vague idea of what is needed. S/he quickly develops a
piece of software, and then sits back and reflects on the question of whether the software does what
s/he wants and how it might be extended or modified, drawing in his/her colleagues if available. The
developer goes round the development/evaluation loop several times until s/he decides s/he has got a
suitable release. S/he then does testing of a very cursory nature. For example, a few items of data
similar to the data that will be input when the software is released, is entered into the system, and the
output is checked to see that it looks broadly correct – or at least not broadly incorrect. The software
is then ready to become accepted as a tool for the scientific endeavour.

Figure 1. A model of professional end-user development (from Segal and Morris, 2008)

The salient characteristics of this model are, firstly, the lack of an upfront requirements model;
secondly, the intertwining of evaluation and the identification of emergent requirements (‘Is this what
I/we want?’), and finally, the cursory nature of the final testing. This model would not be taught in
any software engineering course – and yet, to judge by its pervasiveness, it works. But only in a very
particular context, as I shall now discuss.

Starting off with a vague idea of what is needed depends on the developer having sufficient
knowledge of the domain.

The reliance on feedback depends on the developer being embedded in the user community. Many of
us will have experienced problems in getting potential users to engage in a software development in

Vague idea of
what is
needed

Develop piece of
software

Um – is this
what I/we
want?

Modify/extend

It’ll do
Does it seem
to do what I
expect?

No
Looks
like it

No

Yes

 4

PPIG, Lancaster 2008 www.ppig.org

order to give informed and reasoned feedback. Getting such feedback is much easier if you, as the
developer, are just asking your mate at the next desk/bench ‘Have a look at this. What do you think?’

I have several suggestions as to why testing is so cursory. The first is to do with the low value placed
on software as opposed to that placed on the science: the software is valued only insofar as it
progresses the science. I suggest that scientists regard the software in the same light as any other
instrument for enabling their scientific endeavours. It is argued by many philosophers and historians
of science, see for example, Chalmers, 1982, that scientists assume that their instruments work unless
confronted by absolutely incontrovertible evidence. Perhaps this assumption also holds for their
software: the innate quality of the software is not questioned unless it becomes clear that the software
is not supporting the science. The second is to do with the developer being embedded in the user
community. If a scientist does find faults in a piece of professional end-user developed software, then
the developer is readily at hand (either the scientist him/herself or a close colleague) to make
amendments. The third suggestion is to do with the nature of scientific software and concerns the
great difficulty of validating software (such as scientific software) in which the domain is only poorly
understood and, in fact, the aim of the software is to advance the understanding of the domain, see, for
example, Carver et al. 2007. In this case, there is simply no way in which the scientists can know
whether the output from the software is correct: s/he just has to rely on her/his gut instincts that the
output is not absolutely wrong.

3. Clashing cultures: some problems that arise when scientists and software
engineers work together
In this section, I shall describe, firstly, a situation in which software engineers tried to impose a
traditional software engineering culture on scientists, and secondly, a situation in which a scientist
assumed software engineers were working within a professional end-user development culture, as
described above.

3.1. Why can’t scientists be more like software engineers?

The discussion in this section is based on the field study described in Segal, 2005. The context of the
field study is thus: the scientists were familiar with writing their own software in the lab to drive
instruments such as spectrometers and to analyse the data coming from the instrument. They were
now about to embark on a very risky endeavour: rather than pick up space material and bring it back
to earth to be analysed in the lab, they were going to send an instrument up into space to do the
analysis in situ and relay the results back to earth. They brought in software engineers to write a
library of components which they could use to drive the instrument, and themselves had a model of
the instrument in the lab which they could use to reify their requirements.

The software engineers followed a waterfall-type phased model of software development as
recommended by the European Space Agency. The scientists in their lab followed the model of
professional end-user development as described in section 2.2 above. The first problem lay with
requirements and is illustrated in Figure 2. The software engineers needed an upfront requirements
document; the scientists expected most of the requirements to emerge.

Other problems stemmed from the scientists being used to working within the lab, where informal
face-to-face communication flourished. They were thus not used to either writing or reading formal
project documents, such as requirement documents, and were thus not aware of the contents of such
documents, and hence did not fully know which requirements had – or had not - been implemented.
Their user acceptance testing was as cursory as that described in section 2.2.

 5

PPIG, Lancaster 2008 www.ppig.org

Figure 2: Why can’t a scientist be more like a software engineer? upfront versus emergent

requirements (from Segal and Morris, 2008)

3.2. Why can’t software engineers be more like scientists?

In this section, I describe, in somewhat simplified terms, an aspect of a hitherto unpublished field
study in which molecular biologists were employing software engineers to write some community
software. The molecular biologists had all been at one time professional end-user developers, and
some were still developing their own software. However, the community for which the software is
intended is somewhat diverse and the software itself is considerably bigger than any that a
professional end-user developer would tackle, and hence it was felt necessary for the scientists to
employ software engineers.

The first problem again lies with requirements. The molecular biologist heading the project said as he
handed over a list of features to the project manager of the software engineers: ‘We know exactly
what the requirements are and here is a list of them.’ Of course, the features were at too high a level
for the software engineers to begin to implement. Figure 3 illustrates a hypothetical (but very
realistic) instance.

Figure 3: Why can’t a software engineer be more like a scientist?

The scientist’s injunction to write a piece of software with a particular piece of scientific functionality
is perfectly reasonable provided that the developer is a professional end-user developer. In this case,
the developer knows the domain, has some intuition as to how a simple graph-matching program
might work and might be used; can develop a first prototype and ask his/her peers for feedback, and

I need your
requirements…

Sorry haven’t quite
worked out what they
are…

I need your
requirements
NOW …

Ooh, wouldn’t it be
interesting if we
tried that? …

GIVE ME YOUR
REQUIREMENTS
…

Just have to work
out what’s going on
here…

Sigh …
Sigh …

Software engineer Scientist

Just write a
simple graph-
matching
program.

I need it by next
week.

EH?

What’s a graph
matching program?

What sort of graphs?

How are they
matched?

How will it be used?

BY NEXT WEEK???

HELP!

Scientist
Software engineer

 6

PPIG, Lancaster 2008 www.ppig.org

generally follow the professional end-user development model. The poor software engineer, however,
with no – or at best, weak – understanding of the domain, has great difficulty in proceeding.

Figure 3 illustrates another clash between the expectations of professional end-user developers and
software engineers. This is to do with the time that software development takes, which in turn
depends on the different values and behaviours espoused by professional end-user developers and
software engineers. In general, professional end-user development takes less time. The software
project manager in this field study told me that, as a rough rule of thumb, his team took three times
longer to produce a piece of software than the scientists expected. There are several potential reasons
for this. The first concerns requirements. The establishment of requirements in professional end-user
development, as illustrated in Figure 1, is absolutely integrated with the software development. In
addition, the context in which professional end-user development flourishes, as described in section 2,
is one in which the developer is a faithful representative of the user group, which implies that the user
group is homogenous and not split into subgroups with diverse goals and behaviours. For the
software engineer developing software for a diverse community (as in this field study), establishing
requirements is a time consuming and difficult task. Potential users have to be persuaded to tear
themselves away from their current endeavours and engage with the development of a system which
they may well never use in its mature state (such potential users are often on short term research
contracts). The software engineers have to ensure that the diversity of the user community is properly
represented; that clashes between different branches of the community are resolved, and so on. The
second concerns those issues which reflect the values of software engineering as opposed to those of
professional end-user development. Foremost among these is testing. In 2.2, I discussed the fact that
the cursory testing which is a feature of professional end-user development may be due to the fact that
the emphasis is on the science which the software is intended to support and not on the software per
se. Software engineers, on the other hand, should ideally identify the quality goals for any piece of
software, and allocate testing time in accordance with these goals. For example, a quality goal might
be robustness, in which case much time must be spent testing that the software does not fall over
given a variety of inputs. Other issues which do not usually impact on professional end-user
development include portability and maintainability. There might also be security issues when a
diverse user community is involved, for example, issues of data access when users from different
branches of the user community use the same system.

4. The limitations of my field studies
I have undertaken a variety of field studies (Segal, 2007) in quite a variety of settings. The
application domains have been in financial mathematics, earth and planetary scientists, and molecular
biologists; the scientists have developed their software either in partnership with software engineers or
on their own; the software developed has included software to drive instruments, model financial
markets, and to store, analyse and support the interpretation of data. Across this variety, I have found
a number of commonalities, such as the low value ascribed to software development knowledge and
skill compared with domain knowledge and skills, and the ubiquity of the professional end-user
development model.

My field studies are in no way comprehensive however. For example, the software engineers in my
studies never adopted agile methodologies, which, relying as they do on iterative feedback loops and
face-to-face communication (see http://agilemanifesto.org/), might appear to offer more to scientific
software development than the more traditional, phased, waterfall-type methods. There are
experience reports in the literature of software engineers successfully engaging scientists in agile
development, see, for example, Bache, 2003, and Kane, 2003. However, I am not aware of any
objective field study data in this area, and, given my recent experience of co-editing a special issue of
IEEE Software on developing scientific software, I am wondering whether, when scientists refer to
themselves as following an agile methodology, they are not just following the iterative feedback
model of Figure 1.

In addition, my field studies did not cover high performance computing systems (HPCS), that is,
systems in which many processors act in parallel. Such systems are commonly used in science to

 7

PPIG, Lancaster 2008 www.ppig.org

simulate natural phenomena which are too big or too small or too dangerous or too complex to be
investigated in vivo. There has been a lot of interest in researching HPCS in the USA recently,
spurred by a large, multi-phased, ongoing DARPA project (see www.highproductivity.org). This
project was instigated in response to a concern that scientific productivity using HPCS systems did
not seem to improve commensurate with the rate at which the capabilities of the hardware improved.
The aim of the project is thus to improve scientific productivity by a factor of ten, by dint of
improvements in both software and hardware. The exact nature of the concept of ‘scientific
productivity’ appears not to have been completely explicated, however.

The DARPA project has generated many field studies of scientists being deeply involved in the
development of software simulations, see, for example, Carver et al., 2007, Basili et al., 2008. The
contexts in which HPCS are used by scientists vary greatly, and Basili et al., 2008, allow that their
field studies are not comprehensive – and also acknowledge that even within their field studies, they
found a great deal of variation. However, their field studies demonstrate similarities with mine. For
example, they found that the science, rather than the software, was paramount, and they found the
same reliance on emergent requirements and difficulties with testing as did I.

However, some of their findings were different from mine. For example, the relatively low status of
software development that I found universal, was not always found in their case studies. I was told
that sometimes physicists who developed HPCS thought of themselves as forming an elite among
physicists, and, moreover, their opinion of themselves was based not on what they could bring to
physics but rather on their adeptness in employing programmers’ tricks to support parallel processing.
This is totally counter to my findings. I was given a possible explanation for this phenomenon, which
is that these physicists regard physics as having essentially three branches of equal worth: theoretical,
experimental, and in silico (that is, software simulations). This does not appear to be the case in my
field studies where (except in the case of the financial mathematicians) software is seen as a
supporting tool for scientific enquiry rather than as providing a model of science which can be queried
directly. In the case of the financial mathematicians in my field studies who were developing models,
software development tends to be undertaken by students (in the professional sense, that is, people
who had not yet passed a long series of professional exams), and this may account for the lack of
value afforded to it. Given the importance of simulations in science, it is clear that HPCS represent a
domain of scientific software development into which I am going to have to look more closely.

5. Summary and conclusions
My field studies have identified two characteristics of a culture of scientific professional end-user
development: the low value given to software development knowledge and skill compared to domain
knowledge, and a model of professional end-user development. Judged by its pervasiveness, this
latter is very successful, though only in a particular context. I have identified the characteristics of
this context as being the following:

• The developer is embedded in the user community.

• The user community is cohesive.

• The requirements are not fully established at the outset.

• The value of the software lies in the extent to which it progresses science..

I have reported the clashes which occurred when software engineers tried to impose their culture of
traditional software development onto scientists and vice versa.

My field studies, of necessity, illustrate only some of the variety of scientific software development.
Other field studies have investigated the situation in which high performance computing systems are
developed for simulation purposes. These studies have confirmed my findings of the primacy of
science over software, the importance of emergent requirements and the difficulties of testing.

This research is important because I take it as a given that software engineers cannot hope to provide
effective tools, technologies and methods for improving scientific software development without first

 8

PPIG, Lancaster 2008 www.ppig.org

understanding the cultural context, the values and customary behaviours, in which this development
takes place. As I describe in section 3, lack of understanding of this context can lead to major
problems. There is still much work to be done in this area. A complete research agenda would, I
argue, encompass the following:

1. The identification of the salient dimensions against which contexts of scientific computing
might be characterised. Such dimensions might include the following specific to scientific
computing: whether the scientists are developing the software on their own, and if not, the
degree to which software engineers are involved, and the value ascribed to software
development in the user community. Other dimensions might include: whether the user
community is homogenous or diverse, the size of the development team, the longevity of the
code, etcetera.

2. The identification of those established techniques in software engineering which might assist
scientific software developers.

3. The establishment of a mapping between software techniques identified in 2 and contexts
characterised along the dimensions identified in 1.

4. The identification of the means by which scientists might be made aware of those software
engineering techniques and tools which might be relevant to their development.

This latter point is especially significant given the difficulties of sharing software development
knowledge among professional end-user developers, as discussed in section 2.1 above.

This research agenda might appear daunting but I hope that this paper and others like it might
contribute a significant first step.

6 Acknowledgements
I should like to acknowledge my deep gratitude to all those software engineers and scientists who
took part in my field studies. They were invariably patient and reflective, and themselves contributed
great insights.

7. References
Bache E. 2003, ‘Building software for scientists: a report about incremental adoption of XP’, at

XP2003, Genoa, Italy.

Basili, V.R, Carver, J., Cruzes, D., Hochstein, L., Hollingsworth, J.K., Shull, F., Zelkowitz, M. V.,
2008, ‘Understanding the high performance computing community: a software engineers’
perspective’, IEEE Software, to appear.

Carver J.C., Kendall R.P., Squires S.E., Post D.E., 2007, ‘Software Development Environments for
Scientific and Engineering Software: A Series of Case Studies’, Proc. Int’l Conf. Software Eng.
(CSE 2007), IEEE CS Press, 2007, pp. 550–559.

Chalmers, A.F., 1982. What is this thing called science? Open University Press, Milton Keynes, UK

Kane, D. 2003. ‘Introducing agile development into bioinformatics: an experience report’, Agile
Development Conference, 2003.

Kelly, D.F., 2007, ‘A software chasm: software engineering and scientific computing’, IEEE
Software, 24(6), 120-199.

Segal J., 2005, ‘When software engineers met research scientists: a case study’, Empirical
Software Engineering, 10(4), 517-536

Segal J, 2007, ‘Some problems of professional end user developers’, VLHCC, IEEE Symposium on
Visual Languages and Human-Centric Computing, 2007, pp111-118

Segal, J and Morris, C, 2008, ‘Developing scientific software’, IEEE Software, to appear.

