2 research outputs found

    Effects of Temperature, Humidity, and Supply Voltage on MSP430 Behaviors

    Get PDF
    As the demand for microchips to control a more technologically connected world increases, so does the outsourcing of manufacturing these microchips, which poses risks of old microchips being refurbished as new and new microchips being tampered with Hardware Trojans (HT). The purpose of this research is to develop a systematic testing approach to analyze various microchips for abnormal behaviors. The Design of Experiments (DOE) technique was used to investigate the effects of temperature, humidity, and supply voltage (VCC) on microchip response parameters of VOL, VOH, VIL, VIH, and power consumption values. All these parameters were also individually examined against supply voltage under various temperature and humidity conditions on ten different MSP430FG6626s in 2 separate tests to determine Chip to Chip (C-2-C) variation, microchip defects and potential failures. A sealed enclosure was created to achieve various needed testing conditions and to allow for multiple chips to be tested simultaneously. Corresponding devices were equipped to the enclosure for in-situ input variation and output recording. DOE analysis concluded that supply voltage is the most statistically significant factor affecting key microchip response parameters of VIL, VIH and VOH within the limits of the input factors. The high repeatability and consistency of the response data to supply voltage ramping among the tested chips confirm that the testing setup and method used in this research are valid for screening microchips for defects and irregularities

    A Survey on Integrated Circuit Trojans

    Get PDF
    Traditionally, computer security has been associated with the software security, or the information-data security. Surprisingly, the hardware on which the software executes or the information stored-processed-transmitted has been assumed to be a trusted base of security. The main building blocks of any electronic device are Integrated circuits (ICs) which form the fabric of a computer system. Lately, the use of ICs has expanded from handheld calculators and personal computers (PCs) to smartphones, servers, and Internet-of-Things (IoT) devices. However, this significant growth in the IC market created intense competition among IC vendors, leading to new trends in IC manufacturing. System-on-chip (SoC) design based on intellectual property (IP), a globally spread supply chain of production and distribution of ICs are the foremost of these trends. The emerging trends have resulted in many security and trust weaknesses and vulnerabilities, in computer systems. This includes Hardware Trojans attacks, side-channel attacks, Reverse-engineering, IP piracy, IC counterfeiting, micro probing, physical tampering, and acquisition of private or valuable assets by debugging and testing. IC security and trust vulnerabilities may cause loss of private information, modified/altered functions, which may cause a great economical hazard and big damage to society. Thus, it is crucial to examine the security and trust threats existing in the IC lifecycle and build defense mechanisms against IC Trojan threats. In this article, we examine the IC supply chain and define the possible IC Trojan threats for the parties involved. Then we survey the latest progress of research in the area of countermeasures against the IC Trojan attacks and discuss the challenges and expectations in this area. Keywords: IC supply chain, IC security, IP privacy, hardware trojans, IC trojans DOI: 10.7176/CEIS/12-2-01 Publication date: April 30th 202
    corecore