3,161 research outputs found

    A Class of Reversible Primitive Recursive Functions

    Get PDF
    AbstractReversible computing is bi-deterministic which means that its execution is both forward and backward deterministic, i.e. next/previous computational step is uniquely determined. Various approaches exist to catch its extensional or intensional aspects and properties. We present a class RPRF of reversible functions which holds at bay intensional aspects and emphasizes the extensional side of the reversible computation by following the style of Dedekind-Robinson Primitive Recursive Functions. The class RPRF is closed by inversion, can only express bijections on integers — not only natural numbers —, and it is expressive enough to simulate Primitive Recursive Functions, of course, in an effective way

    Vector Addition System Reversible Reachability Problem

    Full text link
    The reachability problem for vector addition systems is a central problem of net theory. This problem is known to be decidable but the complexity is still unknown. Whereas the problem is EXPSPACE-hard, no elementary upper bounds complexity are known. In this paper we consider the reversible reachability problem. This problem consists to decide if two configurations are reachable one from each other, or equivalently if they are in the same strongly connected component of the reachability graph. We show that this problem is EXPSPACE-complete. As an application of the introduced materials we characterize the reversibility domains of a vector addition system
    • …
    corecore