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A class of Recursive Permutations
which is Primitive Recursive complete

Luca Paolinia, Mauro Piccoloa, Luca Roversia

aDipartimento di Informatica – Università di Torino

Abstract

We focus on total functions in the theory of reversible computational mod-
els. We define a class of recursive permutations, dubbed Reversible Primitive
Permutations (RPP) which are computable invertible total endo-functions on
integers, so a subset of total reversible computations. RPP is generated from
five basic functions (identity, sign-change, successor, predecessor, swap), two
notions of composition (sequential and parallel), one functional iteration and
one functional selection. RPP is closed by inversion and it is expressive enough
to encode Cantor pairing and the whole class of Primitive Recursive Functions.

Keywords: Reversible Computation, Unconventional Computing Models,
Computable Permutations, Primitive Recursive Functions, Recursion Theory.

1. Introduction

Mainstream models of computations focus on one of the two possible direc-
tions of computation. We typically think how to model the way the computation
evolves from inputs to outputs while we (reasonably) overlook the behavior in
the opposite direction, from outputs to inputs. Generally speaking, models of
computations are neither backward deterministic nor reversible.

For a very rough intuition about what reversible computation deals with, we
start by an example. Let us think about our favorite programming language
and think of implementing the addition between two natural numbers m and
n. Very likely — of course without absolute certainty — we shall end up with
some procedure sum which takes two arguments and which yields their sum. For
example, sum(3,2) would yield 5. What if we think of asking for the values m
and n such that sum(m,n) = 5? If we had implemented sum in a prolog-like
language, then we could exploit its non deterministic evaluation mechanism to
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list all the pairs (0, 5), (1, 4), (2, 3), (3, 2), (4, 1) and (5, 0) every of which would
well be a correct instance of (m,n). In a reversible setting we would obtain
exactly the pair we started from. I.e., the computation would be backward de-
terministic. The interest for the backward determinism arose in the sixties of
the last century, studying the thermodynamics of computation and the connec-
tions between information theory, computability and entropy. Since then, the
interest for the reversible computing has slowly but incessantly grown.

A forcefully non-exhaustive list of references follows. Reversible Turing ma-
chines are defined in [1, 3, 13, 24] while [1, 2, 12, 25] study some of their com-
putational theoretic properties. Many research efforts have been focused on
boolean functions and cellular automata as models of the reversible compu-
tation [33, 48]. Moreover, some research focused on reversible programming
languages [14, 49]. Of course, the interest to build a comprehensive knowledge
about reversible computation is wider than the mere interest for its computa-
tional theoretic aspects. The book [40] is a comprehensive introduction to the
subject. It spans from low-power-consumption reversible hardware to emerging
alternative computational models like quantum [11, 52] or bio-inspired [10] of
which reversibility is one the unavoidable building blocks.

Goal. The focus of this work is on a functional model of reversible computation.
Specifically, we look for a sufficiently expressive class of recursive permutations
able to represent all Primitive Recursive Functions (PRF) [42, 46] whose rele-
vance is sometimes traced to the slogan “programs which terminate but do not
belong to PRF are rarely of practical interest.”

We aim at formalizing a language that we identify as Reversible Primitive
Permutations (RPP) and which retains the more interesting aspects of PRF. In
analogy to PRF, our goal is to get a functional characterization of computability
– but in a reversible setting, of course — because functions are handier in
order to compose algorithms. Other models, like, for example, Turing machines-
oriented ones are more convincing from an implementation view-point. The
ability to represent Cantor pairing [43] is one of the main properties that the
functional characterization we are looking for must satisfy. With Cantor pairing
available it is possible to express all interesting total properties about the traces1

of Turing machines, reversible or not. The other must-have property of our
functional characterization is closure under inversion, which is something very
natural to ask for in a class of permutations and of reversible computing models.

Our quest is challenging because various negative results could have played
against it. First of all, we remark that the class of all (total) recursive permu-
tations cannot be effectively enumerated (see [42, Exercise 4-6, p.55]). In [17] a
constructive generation of all the recursive permutations is given starting from
primitive recursive permutations. Since no enumeration exists for the latter,
none can exist for the former. Worst, the class of primitive recursive permuta-

1Kleene’s Tn predicate, Kleene’s normal form theorem and technical tools related to them
[9, 36, 46].
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tions is not closed under inversion [19, 37, 46]. Since the above negative results
hold also for the class of elementary permutations [8, 16, 18], there is no hope to
find any effective description neither of the class of recursive permutations nor of
the classes of primitive recursive permutations and of elementary permutations.

Comparison with the known literature. Our quest to identify the reversible anal-
ogous of PRF must be throughly related to the following works.

• The programming language SRL restricts LOOP, a language for program-
ming PRF functions [32]. Matos introduces SRL and some of its variants
in [29]. He is the first using Z — the natural numbers with sign — as the
ground type for classes of reversible functions. We share the choice with
him. The work [29] focuses on the algebraic aspects of his languages and
its relations with matrix groups.

The study of the classes of functions that SRL variants can identify is
part of Matos’ work. Variants of SRL are complete with respect to re-
versible boolean circuits [30]. Proving that some given variant of SRL
is PRF-complete, i.e. that it represents all the functions in PRF, natu-
rally ends up with the quest to encode the “test for 0” like in the proof
that LOOP and PRF are equivalent [32]. We conjecture that no variant of
Matos’ languages exists able to simulate a conditional control on the flow
of execution that, instead, RPP contains by definition. Of course, proving
the conjecture false, would promote SRL to be (in a reasonable sense) the
minimal reversible and PRF-complete language.

• The precursor of this work is [37]. It introduces the class of functions RPRF
which is closed by inversion and is PRF-complete. The completeness of
RPRF relies on built-in Cantor pairings. In this paper we show that we can
get rid of built-in Cantor pairings inside RPP. With no built-in pairing
operators at hand the design of RPP relies on operators which are more
fine-grained as compared to the ones used for the definition of RPRF. This
orients the programming style to enjoy a couple of interesting features.
Inside RPP it is natural avoiding to save the entire history of a calculation
within a single argument, i.e. into a single ancilla. This allows to clean
the garbage at the end of the simulation of any f ∈ PRF, something which
is reminiscent of the simulation of Turing machines devised in [4].

• Finally we discuss [12]. It introduces the class of reversible functions
RI which is as expressive as Kleene’s partial recursive functions [9, 36].
Therefore, the focus of [12] is on partial reversible functions while ours is
on total ones. The expressiveness of RI is clearly stronger than the one
of RPP. However, we see RI as less abstract than RPP for two reasons.
On one side, the primitive functions of RI relies on a given specific binary
representation of natural numbers. On the other, it is not evident that
RI is the extension of a total sub-class analogous to RPP which should
ideally correspond to PRF, but in a reversible setting.
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Contents. We propose a formalism that identifies a class of functions which we
call Reversible Primitive Permutations (RPP) and which is strictly included in
the set of permutations. Section 2 defines RPP in analogy with the definition of
PRF, i.e. RPP is the closure of composition schemes on basic functions.

The functions of RPP have identical arity and co-arity and take Z — and
not only N — as their domain because N is not a group. So, RPP is sufficiently
abstract to avoid any reference to any specific encoding of numbers and strongly
connects our work to Matos’ one [29].

For example, in RPP we can define a sum that given the two integers m and
n yields m+ n and n. Let us represent sum as:

m
n

[
sum

]
m + n
n . (1)

The implementation of sum inside RPP exploits an iteration scheme that iterates
n times the successor, starting on the initial value m of the first input. RPP
implies the existence of a (meta and) effective procedure which produces the
inverse f−1 ∈ RPP of every given f ∈ RPP. I.e., :

p
n

[
sum−1

]
p− n
n (2)

belongs to RPP and it “undoes” sum by iterating n times the predecessor on p.
So if p = m + n, then p − n = m + n − n = m. We remark we could have
internalized the operation that yields the inverse of a function inside RPP like
in [29]. We do not internalize it to avoid mutually recursive definitions in RPP.

Concerning the expressiveness, RPP is closed under inversion and it is both
PRF-complete and PRF-sound. Completeness is the really relevant property
between the two because this means that RPP subsumes the class PRF. This
result is in Section 6. It requires quite a lot of preliminary work that one can
find in Sections 3, 4 and 5 and whose goal is to encode a bounded minimalization
and Cantor pairing. The embedding relies on various key aspects of reversible
computing. The principal ones are: (i) the use of ancillary variables to clone
information and (ii) the compositional programming under the pattern that
Bennett’s trick dictates (cf. Section 7.)

Contributions. RPP is a total class of reversible functions closed under inversion,
which is PRF-complete and sound. We think that it can play a key role in the
setting of reversible computations analogous to that played by PRF in classical
recursion theory. In particular, it can be used to devise the analogous of Kleene’s
normal form theorem and Kleene’s predicates in the reversible setting; it can
be also used to formalize a reversible arithmetic as the primitive recursive one
(a.k.a. Skolem arithmetic).

2. The class RPP of Reversible Primitive Permutations

The identification of RPP merges ideas and observations on Primitive Recur-
sive Functions (PRF) [44, 28, 29, 36], Toffoli’s class of boolean circuits [48] and
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Lafont’s algebraic theory on circuits [21]. We quickly recall the crucial ideas we
borrowed from the above papers in order to formalize the Definition 1.

Toffoli’s boolean circuits are invertible because they avoid erasing informa-
tion. This is why the boolean circuits in [48] have identical arity and co-arity.
RPP adopts this policy for the same reasons.

In analogy with PRF, the class RPP is defined by composing numerical basic
functions by means of suitable composition schemes. The will to manipulate
numbers suggests that the successor S must be in RPP. So S−1 — i.e. the
predecessor P — must be in RPP as well because we want f−1 to be effective.
This requires that the application of P to 0 remains meaningful. Satisfying
this requirement and keeping the definition of RPP as much natural as possible
suggests to extend both the domain and co-domain of every function in RPP to
Z so that P applied to 0 can yield −1. In fact, working with Z as atomic data
it is like working on N up to some existing isomorphism between Z and N.

The core of the composition schemes of RPP comes from [21]. The series
composition of functions is ubiquitous in functional computational model so
RPP uses one. The parallel composition of functions is natural in presence of
co-arity greater than 1 so RPP relies on such a scheme.

2.1. Preliminaries

Let Z be the set of integers and let Zn be its Cartesian product whose
elements are n-tuples, for any n ∈ N. The 0-tuple is 〈 〉. The 1-tuple is 〈x〉 or
simply x. In general, we name tuples with n elements as an, bn, . . . or simply as
a, b, . . . if knowing the number of their components is not crucial. By definition,
the concatenation · : Zi × Zj −→ Zi+j is such that 〈x1, . . . , xj〉 · 〈y1, . . . , yk〉 =
〈x1, . . . , xj , y1, . . . , yk〉. Whenever j = 1 we prefer to write x1 · 〈y1, . . . , yk〉 in
place of 〈x1〉 · 〈y1, . . . , yk〉. Analogously, 〈x1, . . . , xj〉 · y1 will generally stand for
〈x1, . . . , xj〉 · 〈y1〉. The empty tuple is the neutral element so x · 〈〉 = 〈〉 · x = x.
In fact, we shall generally drop the explicit use of the concatenation operator
‘·’. For example, this means that we will often replace a ·x · b · cn ·d by a x b cn d.

Definition 1 (Reversible Primitive Permutations). Reversible Primitive
Permutations (abbreviated as RPP) is a sub-class of Reversible Permutations2.
By definition, RPP =

⋃
k∈N RPPk where, for every k ∈ N, the set RPPk contains

functions with identical arity and co-arity k. The classes RPP0,RPP1, . . . are
defined by mutual induction.

• The identity I, the sign-change N, the successor S and the predecessor P
belong to RPP1. We formalize their semantics, which is the one we may
expect, by means of two equivalent notations. The first is a standard
functional notation that applies the function to the input and produces
an output:

I〈x〉 := 〈x〉 , N〈x〉 := 〈−x〉 , S〈x〉 := 〈x+ 1〉 , P〈x〉 := 〈x− 1〉 .

2For sake of precision, we focus on Total Reversible Recursive Endo-Functions on Zn for
some n ∈ N.
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The second notation is relational. We write the function name between
square brackets; the input is on the left hand side and the output in on
the right hand side:

x [ I ] x , x [ N ]−x , x [ S ] x + 1 , x [ P ] x− 1 .

• The binary rewiring permutation χ belongs to RPP2. The functional no-
tation is the expected one:

χ〈x, y〉 := 〈y, x〉 .

We use two interchangeable relational notations:

x
y

[
χ
]
y

x
and

1, 2
2, 1

2
x
y

[ 1, 2
2, 1

2 ]
y

x
.

The second one explicitly represents (i) the arity, (ii) the input sequence
of the arguments which is the upper sequence of numbers; and (iii) the
output sequence of arguments in the lower sequence of numbers.

• Let f, g ∈ RPPj , for some j. The series composition (f # g) belongs to
RPPj and is such that:

(f # g) 〈x1, . . . , xj〉 = (g ◦ f)〈x1, . . . , xj〉 or

x1

· · ·
xj

[
f # g

]
y1

· · ·
yj

=
x1

· · ·
xj

[
f

][
g

]
y1

· · ·
yj

.

We remark the use of the programming composition that applies functions
rightward, in opposition to the standard functional composition (denoted
by ◦).

• Let f ∈ RPPj and g ∈ RPPk, for some j and k. The parallel composition
(f‖g) belongs to RPPj+k and is such that:

(f‖g) 〈x1, . . . , xj〉〈y1, . . . , yk〉 = (f〈x1, . . . , xj〉) · (g 〈y1, . . . , yk〉) or

x1

· · ·
xj
y1

· · ·
yk

 f‖g


w1

· · ·
wj
z1
· · ·
zk

=

x1

· · ·
xj

[
f

]
w1

· · ·
wj

y1

· · ·
yk

[
g

]
z1
· · ·
zk

,

where · is the composition of sequences (cf. Section 2.1).

• Let f ∈ RPPk. The finite iteration It [f ] belongs to RPPk+1 and is such
that:

It [f ] (〈x1, . . . , xk〉 · x) = ((

|x|︷ ︸︸ ︷
f # . . . # f)‖I) (〈x1, . . . , xk〉 · x) or
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x1

· · ·
xk

x

 It [f ]

 y1

· · ·
yk

 = (f # . . . # f︸ ︷︷ ︸
|x|

) 〈x1, . . . , xk〉

x

.

We remark the linearity constraint on the finite iteration. The argument x
which drives the iteration unfolding cannot be among the arguments of
the iterated function f . Moreover, x is the last argument of It [f ] in order
to apply f to the first n arguments of It [f ] itself.

• Let f, g, h ∈ RPPk. The selection If [f, g, h] belongs to RPPk+1 and is such
that:

If [f, g, h] (〈x1, . . . , xk〉 · x) =


(f‖I) (〈x1, . . . , xk〉 · x) if x > 0

(g‖I) (〈x1, . . . , xk〉 · x) if x = 0

(h‖I) (〈x1, . . . , xk〉 · x) if x < 0

or

x1

· · ·
xk

x

 If [f, g, h]

 y1

· · ·
yk

 =


f 〈x1, . . . , xk〉 if x > 0

g 〈x1, . . . , xk〉 if x = 0

h 〈x1, . . . , xk〉 if x < 0

x

.

We remark the linearity constraint imposed on the definition of selection.
The argument x which determines which among f, g and h must be used
cannot be among the arguments of f, g and h. Moreover, we choose to
use x as the last argument of If [f, g, h] to avoid any re-indexing of the
arguments of f, g and h, once we choose one of them.

Notation 1. If the same value occurs in consecutive inputs or outputs, like, for
example, in:

f〈x1, . . . , xm, 0, . . . , 0︸ ︷︷ ︸
r∈N

, y1, . . . , yn〉 = 〈w1, . . . , wp, 0, . . . , 0︸ ︷︷ ︸
s∈N

, z1, . . . , zq〉 ,

with m+ r + n = p+ s+ q, we will often abbreviate it as:

f〈x1, . . . , xm, 0
r, y1, . . . , yn〉 = 〈w1, . . . , wp, 0

s, z1, . . . , zq〉 or

x1

· · ·
xm

0r

y1

· · ·
yn

 f


w1

· · ·
wp

0s

z1
· · ·
zq

.

In particular, 00 means that no occurrences of 0 exist.

The following proposition certifies that identifying the inverse of a term
inside RPP is a simple task. I.e., given the representation of a function f in RPP,
generating f−1 is effective and such that (y, x) ∈ f−1 if and only if (x, y) ∈ f .
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Proposition 1 (The (syntactical) inverse f−1 of any f). Let f ∈ RPPj, for
any j ∈ N. The inverse of f is f−1, belongs to RPPj and, by definition, is:

I−1 := I , N−1 := N , S−1 := P , P−1 := S , χ−1 := χ ,

(g # f)
−1

:= f−1 # g−1 , (f‖g)
−1

:= f−1‖g−1 ,

(It [f ])
−1

:= It
[
f−1

]
, (If [f, g, h])

−1
:= If

[
f−1, g−1, h−1

]
.

Then f # f−1 = I and f−1 # f = I.

Proof. By induction on the definition of f .

Proposition 1 shows that RPP allows for a very smooth, syntactically driven,
definition of the operation that makes the inverse of a given f effectively avail-
able. Other methods can exist. For example, [31, 41] pursue a sort of “brute
force” method which is not at all syntax directed.

Of course, RPP is syntactically redundant. For example, both the parallel
composition of two occurrences of the unary identity and the series-composition
of two swaps yield the identity with arity 2. Moreover, the selection needs not
be defined on three (higher-order) arguments as we do. Superfluous ingredients
help to make the programming with RPP a bit more reasonably easy task. ?

Proposition 2 (Relating series composition and parallel composition). Let
f, g ∈ RPPj and f ′, g′ ∈ RPPk with j, k ∈ N. Then:

(f‖f ′) # (g‖g′) = (f # g)‖(f ′ # g′) .

Proof. By definition:

(f‖f ′) # (g‖g′) a b = (g‖g′)(f‖f ′) a b
= (g‖g′) (fa) (f ′b)

= (gfa)(g′f ′b)

= ((f # g) a)((f ′ # g′) b)
= ((f # g)‖(f ′ # g′)) a b .

We conclude with some comments on the relevance of having functions with
identical input and output arity in RPP. Toffoli’s works on reversible boolean
circuits influenced our choice. However, in [39] we extend a reversible language
with a bijective built-in map from Z×Z to Z such that 〈0, 0〉 7→ 0. Clearly, the
input/output symmetry breaks up and we move from permutations to isomor-
phisms. The built-in bijection allows to generate as many ancillary arguments
as needed for fully developing reversible computations. Once finished, ancillae
will be repackaged into a single argument.

3. Generalizations inside RPP

We introduce formal generalizations of elements in RPP. This helps simpli-
fying the use of RPP as a programming notation.
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Weakening inside RPP. For any given f ∈ RPPm an infinite set {wn(f) | n ≥
1 and wn(f) ∈ RPPm+n} exists such that:

x1

· · ·
xm

xm+1

· · ·
xm+n

 wn(f)


y1

· · ·
ym

 = f 〈x1, . . . , xm〉

xm+1

· · ·
xm+n

,

for every wn(f). We call wn(f) weakening of f which we can obviously obtain
by parallel composition of f with n occurrences of I. In general, if we need
some weakening of a given f , then we shall not write wn(f) explicitly. We shall
instead use f and say that it is the weakening of f itself.

Generalized identity, sign-change, successor and predecessor. For every i ≤ n,
the following functions in RPPn exist:

In 〈x1, . . . , xi−1, xi, xi+1, . . . , xn〉 = 〈x1, . . . , xi−1, xi, xi+1, . . . , xn〉
Nn

i 〈x1, . . . , xi−1, xi, xi+1, . . . , xn〉 = 〈x1, . . . , xi−1,−xi, xi+1, . . . , xn〉
Sni 〈x1, . . . , xi−1, xi, xi+1, . . . , xn〉 = 〈x1, . . . , xi−1, xi + 1, xi+1, . . . , xn〉
Pn
i 〈x1, . . . , xi−1, xi, xi+1, . . . , xn〉 = 〈x1, . . . , xi−1, xi − 1, xi+1, . . . , xn〉 .

They are the weakening of I,N,S,P ∈ RPP1. When the arity n is clear from the
context, we allow to use I,Ni,Si and Pi in place of In,Nn

i ,S
n
i and Pn

i .

Generalized rewiring permutations. The literature offers terminology and nota-
tion related to the reversible computing which is far from being uniform. Just
as an example, the class od of invertible functions of [9, p.2] differs from the ?
namesake class that [27] defines. From [27] we take that a permutation on a set
S is a bijection on S, i.e. an endo-bijection on S. Very often, the intended mean-
ing of “permutation” is “finite permutation on a given (finite) set S.” Generally
speaking, this is not our case at least because, as we will see in Section 5, we
deal with pairing inside RPP. When dealing with permutations of RPP whose
only goal is to re-arrange the finite set {1, . . . , k} of indexes of their arguments,
we talk about rewiring permutations.

Proposition 3 (Rewiring Permutations in RPP.). Each rewiring permutation
with arity and co-arity equal to k belongs to RPPk.

Proof. Fixed a rewiring permutation to represent, it is enough to suitably com-
pose identity , binary rewiring permutation, series composition, parallel compo-
sition and weakening .

Let {i1, . . . , in} = {1, . . . , n} and ρ : Nn −→ Nn The notation for a rewiring
permutation in RPPn, sending the i1-th input to the ρ(i1)-th output, the i2-th
input to the ρ(i2)-th output etc. is: i1 ,..., im

ρ(i1),...,ρ(im)

n . (3)
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Generalized finite iteration. Let f ∈ RPPn and m ≥ n + 1. Let 〈i〉, L =
〈i1, . . . , in〉 and 〈j1, . . . , jm−n−1〉 be a partition of natural numbers in the interval
〈1, . . . ,m〉. We are going to define Itmi,L [f ] such that its argument of position i
drives an iteration of f from L. I.e., Itmi,L [f ] 〈x1, . . . , xm〉 = 〈y1, . . . , ym〉, where:

yi = xi

〈yj1 , . . . , yjm−n−1〉 = 〈xj1 , . . . , xjm−n−1〉
〈yi1 , . . . , yin〉 = (f # . . . # f︸ ︷︷ ︸

|xi|

)L .

We observe that Itmi,L [f ] is the identity on 〈xj1 , . . . , xjm−n−1
〉. By definition:

Itmi,L [f ] :=
1 ,..., n ,n+1,n+2,..., m
i1,...,in, i , j1 ,...,jm−n−1

m # (It [f ]‖Im−n−1) #
(1 , ... n ,n+1,n+2,..., m

i1,... in, i , j1 ,...,jm−n−1

m)−1

.

The condition on i preserves the linearity constraint of It [f ].

Generalizing the selection. Let f, g, h ∈ RPPn and m ≥ n + 1. Let 〈i〉, L =
〈i1, . . . , in〉 and 〈j1, . . . , jm−n−1〉 be a partition of natural numbers in the in-
terval 〈1, . . . ,m〉. We are going to define Ifmi,L [f, g, h] such that its argument
of position i determines which among f, g and h must be applied to L. I.e.,
Ifmi,L [f, g, h] 〈x1, . . . , xm〉 = 〈y1, . . . , ym〉 where:

yi = xi

〈yj1 , . . . , yjm−n−1〉 = 〈xj1 , . . . , xjm−n−1〉

〈yi1 , . . . , yin〉 =


f 〈xi1 , . . . , xin〉 if xi > 0

g 〈xi1 , . . . , xin〉 if xi = 0

h 〈xi1 , . . . , xin〉 if xi < 0 .

We observe that Ifmi,L [f, g, h] is the identity on 〈xj1 , . . . , xjm−n−1〉. By definition:

Ifmi,L [f, g, h] :=
 1...n ,n+1,n+2,..., m
i1...in, i , j1 ,...,jm−n−1

m
# (If [f, g, h]‖Im−n−1)

#
(1 ,..., n ,n+1,n+2,..., m

i1,...,in, i , j1 ,...,jm−n−1

m)−1

.

The condition on i preserves the linearity constraint of Ifmi [f, g, h].

4. A library of functions in RPP

We introduce functions to further simplify programming inside RPP by re-
lying on temporary arguments, ancillary arguments or ancillae. They are ad-
ditional arguments that can: (i) hold the result of the computation; (ii) tem-
porarily record copies of values for later use; (iii) temporarily store intermediate
results. Without loss of generality, we use ancillae in a very disciplined way
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in order to simplify their understanding. Tipically, ancillae are initialized to
zero. We cannot forget (reversibly) the content of ancillae, so they have to be
carefully considered in compositions albeit sometimes we neglect their contents
(tipically, just forwarding them). Notions that recall the meaning of ancillae
are common to the studies on reversible and quantum computation. They are
“temporary” lines, storages, channels, bits and variables [48].

General increment and decrement. Let i, j and m ∈ N be distinct. Two func-
tions incj;i, decj;i ∈ RPPm exist such that:

x1

· · ·
xj
· · ·
xi
· · ·
xm

 incj;i


x1

· · ·
xj
· · ·
xi + |xj |
· · ·
xm

and

x1

· · ·
xj
· · ·
xi
· · ·
xm

 decj;i


x1

· · ·
xj
· · ·
xi − |xj |
· · ·
xm

.

We define them as:

incj;i := Itmj,〈i〉 [S] decj;i := Itmj,〈i〉 [P] .

A function that compares two integers. Let k, j, i, p, q be pairwise distinct such
that k, j, i, p, q ≤ n, for a given arity n ∈ N. A function lessi,j,p,q;k ∈ RPPn

exists that implements the following relation:

x1

· · ·
xk

· · ·
xn

 lessi,j,p,q;k


x1

· · ·
xk +

{
1 if xi < xj
0 if xi ≥ xj .

· · ·
xn

The function lessi,j,p,q;k is expected to behave in accordance with the in-
tended meaning whenever the arguments xp, xq are initially contains 0, viz.
they are ancillae. Tipically, xk will be used as ancilla initialized to zero and it
is not a temporary argument. If the value of xk is initially 0, then lessi,j,p,q;k

returns 0 or 1 in xk depending on the result of comparing the values xi and
xj . Both xp and xq serve to duplicate the values of xi and xj , respectively.
The copies allow to circumvent the linearity constraints in presence of nested
selections.

Let {j1, . . . , jn−5} = {1, . . . , n} \ {k, j, i, p, q}. We define

lessi,j,p,q;k :=
k,p,q,i,j,j1,...,jn−5

1,2,3,4,5, 6 ,..., n

n # inc5;3 # inc4;2 # (4)

(F ‖ In−5) # (5)(
inc5;3 # inc4;2

)−1 #
(k,p,q,i,j,j1,...,jn−5

1,2,3,4,5, 6 ,..., n

n)−1

(6)

where F is

If55,〈1,2,3,4〉
[
If44,〈1,2,3〉[SameSign,S3

1,S
3
1],,,If44,〈1,2,3〉[I

3, I3,S3
1],,,If44,〈1,2,3〉[I

3, I3,SameSign]
]

11



and SameSign := dec2;3 # If33,〈1,2〉[S2
1, I

2, I2] # (dec2;3)
−1

.
The series composition at the lines (4) and (6) are one the inverse of the other.
The leftmost function at line (4) moves the five relevant arguments in the first
five positions3. The rightmost function at line (4) duplicates xi and xj into the
ancillae xp and xq, respectively. The functions at line (6) undo what those ones
at line (4) have done. In between them, at line (5) the function F ‖ In−5 receives
a given 〈xk, xp + |xi|, xq + |xj |, xi, xj , xj1 , . . . , xjn−5〉 as argument and operates

on its first five elements. We explain F ∈ RPP5 by the following case analysis
scheme:

xi > 0 xi = 0 xi < 0

If
5
5,〈1,2,3,4〉[ If44,〈1,2,3〉[ SameSign, S3

1, S3
1 ] xj > 0

, If44,〈1,2,3〉[ I3, I3, S3
1 ] xj = 0

, If44,〈1,2,3〉[ I3, I3, SameSign ]] xj < 0

.

For example, let us assume xj < 0 and xj < 0. The nested selections of F
eventually apply SameSign to a tuple of three elements 〈xk, xp + |xj |, xq + |xi|〉.
The effect of dec2;3 is to update the third element of the tuple yielding 〈xk, xp +
|xj |, xq + |xi| − xp − |xj |〉. So, whenever the initial value of the temporary
arguments xp and xq is 0, we can deduce which among xi and xj is greater than
the other. The value of xk is incremented only when the difference is positive.
SameSign concludes by unfolding its local subtraction.

A function that multiplies two integers. Let k, j, i be pairwise distinct such that
k, j, i ≤ n, for any n ∈ N. A function multk,j;i ∈ RPPn exists such that:

x1

· · ·
xi

· · ·
xn

 multk,j;i


x1

· · ·
(xi + |xk| × |xj |)×

{
1 if xk, xj have same sign

−1 if xk, xj have different sign
· · ·
xn

.

The function multk,j;i behaves in accordance with the intended meaning when-
ever the ancilla xi is initially set to 0. In that case multk,j;i yields |xj | × |xk|
in position i which is multiplied by −1 if, and only if, xj and xk have different
sign. We define:

multk,j;i = Itnk,〈i,j〉 [inc2;1] # Ifnk,〈i,j〉
[
If21,〈2〉 [I, I,N] , If21,〈2〉 [I, I, I] , If

2
1,〈2〉 [N, I, I]

]
which gives the result by first nesting the iterations of inc2;1 inside an explicit
iteration (acting on 3 arguments) and then setting the correct sign.

3 The order of the first five elements has been carefully devised in order to avoid index
changes of arguments due to the removal of intermediate arguments to satisfy the linearity
constraint of the If.
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A function that encodes a bounded minimization. Let Fi;j ∈ RPPn with i 6= j
and i, j ≤ n. For any 〈x1, . . . , xi, . . . , xn〉 and any y ∈ N, which we call range, we
look for the minimum integer v such that, both v ≥ 0 and Fi;j〈x1, . . . , xi−1, xi +
v, xi+1, . . . , xn〉 returns a negative value in position j, when a such v exists. If
v does not exist we simply return |y|. Summarizing, min(Fi;j) ∈ RPPn+4 is:

x1

· · ·
xn

xn+1

0
0

xn+4



m
in

(F
i;
j
)


x1

· · ·
xn
xn+1 +



v whenever 0 ≤ v< |xn+4| is such that

Fi;j〈. . . , xi−1, xi + v, xi+1, . . .〉 = 〈. . . , yj−1, z
′, yj+1, . . .〉 and z′ < 0

and, for all u such that 0≤u<v,

Fi;j〈. . . , xi−1, xi + u, xi+1, . . .〉 = 〈. . . , yj−1, z, yj+1, . . .〉 and z ≥ 0;

|xn+4| otherwise.

0
0
xn+4

The function min(Fi;j) behaves in accordance with the here above specification
when: (i) the arguments xn+1, xn+2 and xn+3, that we use as temporary argu-
ments, are set to 0, and (ii) xn+4 is set to contain the range y. We plan to use
the ancilla xn+3 as flag, the ancilla xn+2 as a counter from 0 to xn+4 and, the
ancilla xn+1 as store for v (or 0). We define:

min(Fi;j) :=

It
[
(Fi;j‖I3) # Ifn+3

j,〈n+1,n+2, n+3〉

[
I3, I3, (If

[
I2, inc2;1, I

2
]
# S3

3)
]
# (Fi;j‖I3)

−1 # (Sni ‖S3
2)
]
#

Ifn+4
n+3,〈n+1,n+4〉 [I, inc2;1 , I] #(
It
[
(Fi;j‖I3) # Ifn+3

j,〈n+1,n+2, n+3〉

[
I3, I3,S3

3)
]
# (Fi;j‖I3)

−1 # (Sni ‖S3
2)
])−1

.

The first line of the here above definition iterates its whole argument as many
times as specified by the value of the range in xn+4:

(Fi;j‖I3) # Ifn+3
j,〈n+1,n+2, n+3〉

[
I3, I3, (If

[
I2, inc2;1, I

2
]
# S3

3)
]
# (Fi;j‖I3)

−1 # (Sni ‖S3
2) 1-st step,

...

# (Fi;j‖I3) # Ifn+3
j,〈n+1,n+2, n+3〉

[
I3, I3, (If

[
I2, inc2;1, I

2
]
# S3

3)
]
# (Fi;j‖I3)

−1 # (Sni ‖S3
2) k-th step,

...

# (Fi;j‖I3) # Ifn+3
j,〈n+1,n+2, n+3〉

[
I3, I3, (If

[
I2, inc2;1, I

2
]
# S3

3)
]
# (Fi;j‖I3)

−1 # (Sni ‖S3
2) xn+4-th step;

let us assume that the xj is negative at step k. We have two cases.

• The first case is with xn+3 equal to 0. By design, this means that xj has
never become negative before. So, xi contains the value v we are looking
for. The firs step of:

If
[
I2, inc2;1, I

2
]
# S3

3 (7)

is to store xn+2 into xn+1. The reason is that, by design, the increments
applied to xn+2 and xi are always stepwise aligned. The second step of (7)
is to increment xn+3, preventing any further change of the value of xn+1

by the subsequent steps of the iteration.
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• The second case is with xn+3 different from 0. By design, this means that
xj has become negative in some step before the current k-th one. So, (7)
skips inc2;1. The increment S3

2 that operates on xn+3 is harmless because
it just reinforces the idea that the value v we were looking for is “frozen”
in xn+1.

After any occurrence of (7) it is necessary to unfold the last application of Fi;j

by means of Fi;j
−1. Then, increasing xi and xn+2 supplies a new value to Fi;j

and keeps xn+2 aligned with xi.

After the first iteration completes, the evaluation follows with the second
line Ifn+4

n+3,〈n+1,n+4〉 [I, inc2;1 , I] # in the definition of min(Fi;j). It takes care
of two cases.

• The value of xn+3 is not zero: somewhere in the course of the iteration
Fi;j became negative. We have set xn+1 in accordance with that.

• The value of xn+3 is zero: Fi;j became negative in the course of the itera-
tion. By definition, inc2;1 sets xn+1 to the value of the range in xn+4.

The last line of min(Fi;j) undoes what the first line did, without altering the
values of xn+1. This is why If

[
I2, inc2;1, I

2
]

is missing. In fact, the last line of
min(Fi;j) is an application of Bennett’s trick [3] in our functional programming
setting.

5. Cantor pairing functions

Pairing functions provide a mechanism to uniquely encode two natural num-
bers into a single natural number [43]. We show how to represent Cantor pairing
functions as functions of RPP restricted on natural numbers, albeit it is possible
to re-formulate the pairing function on integers (see [37].)

Definition 2. Cantor pairing is a pair of isomorphisms Cp : N2 −→ N and
Cu : N −→ N2 which embed N2 into N:

Cp(x, y) =x+

x+y∑
i=0

i (8)

Cu(z) =

〈
z −

k−1∑
i=0

i ,,, (k − 1)− (z −
k−1∑
i=0

i)

〉
where k is the least value s.t.
k ≤ z and z <

∑k
i=0 i.

The pairing functions in the above Equation (8) rely on the notion of trian-
gular number Tn =

∑n
i=0 i, for any n ∈ N.

Lemma 1. For every x1, x2 and x3 ∈ N, the two following functions exist:

x1

x2

[
T2
]
x1 + 1
x2 + x1 + 1

x1

x2

x3

[
T3

]
x1

x2 + x1

x3 + x2x1 +
∑x1
i=0 i

.

and belong to RPP2 and RPP3, respectively.
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Proof. Let T2 be S2
1 # inc2

1;2 and let T3 ∈ RPP3 be It31,〈2,3〉 [T2]. The result is
immediate because we are interested in the behaviour of the operator only on
positive numbers, viz. x1, x2, x3 ∈ N.

We shall systematically neglect to specify the relational behavior of the com-
ing definitions of functions on negative input values.

Theorem 2. For every x ∈ N, the following function is in RPP4:

x
y

0

0

 Cp

 x
y

(
∑x+y
i=0 i) + x

0

.

Proof. Let Cp be inc4
1;2 # inc4

1;4 #
1, 2, 3, 4

2, 3, 1, 4

4

#(T3‖I)#dec4
1;2 #

1, 2, 3, 4
4, 1, 3, 2

4

#dec4
1;2.

We now turn to representing Cu. The computation of the difference between
a given z and the triangular number

∑k
i=0 i, limited by z, is at the core of Cu.

Lemma 3 (Subtracting a triangular number). For every x3 and x4 ∈ N, the
following function exists:

0
0

x3

x4

[
H3;4

]
0
0
x3

x4 −
∑x3
i=0 i

and belongs to RPP4.

Proof. Let H3;4 be:(1, 2, 3, 4
3, 2, 1, 4

4

# (T3‖I)
)

# dec4
3;4 #

(1, 2, 3, 4
3, 2, 1, 4

4

# (T3‖I)
)−1

.

By Lemma 1 the proof is done.

We can supply H3;4 to the minimization min in order for it to yield a series of
“attempts” whose goal is to find when H3;4 becomes negative in its 4th output:

1-st attempt 2-nd attempt j-th attempt
0
0
0
z

[
H3;4

]
0
0
0
z −

∑0
i=0 i

0
0
1
z

[
H3;4

]
0
0
1
z −

∑1
i=0 i

· · ·
0
0
j
z

[
H3;4

]
0
0
j

z −
∑j
i=0 i

· · ·

The representation of Cu relies on the search here above.

Theorem 4 (Representing Cu : N2 −→ N in RPP). A function Cu ∈ RPP8

exists such that, for every z ∈ N:

z

0

0

05

 Cu

 z

z − (
∑v−1
i=0 i)

(v − 1)− (z − (
∑v−1
i=0 i))

05 ,

where v is the least value such that v ≤ z and z− (
∑v

i=0 i) < 0. So z− (
∑v−1

i=0 i)
is the first component of the pair that z represents under Cantor pairing and
(v − 1)− (z − (

∑v−1
i=0 i)) is the second one.
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Proof. Let Cu be:1, 2, 3, 4, 5, 6, 7, 8
4, 2, 3, 1, 5, 6, 7, 8

8

# inc8
4;8 # min(H3;4)

#P8
5 #
1, 2, 3, 4, 5, 6, 7, 8

1, 2, 5, 4, 3, 6, 7, 8

8

# (H3;4‖I4) # dec8
4;3 #

1, 2, 3, 4, 5, 6, 7, 8
8, 4, 3, 2, 5, 6, 7, 1

8

The series composition
1, 2, 3, 4, 5, 6, 7, 8

4, 2, 3, 1, 5, 6, 7, 8

8

# inc8
4;8 sets the input for min(H3;4)

which receives the tuple 〈0, 0, 0, z, 0, 0, 0, z〉 and yields 〈0, 0, 0, z, k, 0, 0, z〉 where

k is the least value such that k ≤ z and z <
∑k

i=0 i. The predecessor P8
5

sets its 5th argument to the value k − 1 which is required to correctly apply
Cu (see Definition 2). The next rewiring sets the tuple 〈0, 0, k − 1, z, 0, 0, 0, z〉,
argument of H3;4‖I4 which produces 〈0, 0, k−1, z−

∑k−1
i=0 i, 0, 0, 0, z〉. The value

z −
∑k−1

i=0 i is the first component of the pair of numbers we want to extract
from the first argument of the whole Cu. The second component is k− 1− (z−∑k−1

i=0 i) we obtain by applying dec8
4;3. The last rewiring rearranges the values

as required.

As a remark, Theorem 2, Lemma 3 and Theorem 4 can be extended to
functions that operate on Z, not only on N, suitably managing signs [37].

6. Expressiveness of RPP

We start to show how to represent stacks as natural numbers in RPP. I.e.,
given x1, x2, . . . , xn ∈ N we can encode them into 〈xn, . . . , 〈x2, x1〉 . . .〉 ∈ N
by means of a sequence of push on a suitable ancillae, while a corresponding
sequence of pop can decompose it as expected.

Proposition 4 (Representing stacks in RPP). Functions push, pop ∈ RPP10

exist such that:

s
x

08

[
push

]
Cp(s, x)
0
08

Cp(s, x)
0

08

[
pop

]
s
x
08

,

for every value s ∈ N (the “stack”) and x ∈ N (the element one has to push on
or pop out the stack.)

Proof. The function zClean := (I2‖Cu) # dec10
4;1 # dec10

5;2 # (I2‖Cu)
−1

is such
that:

s
x

Cp(s, x)

07

 zClean

 0
0
Cp(s, x)

07

so, push := (Cp‖I6) # zClean #(
1, 2, 3

3, 2, 1

3

‖I6) and pop := push−1.
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6.1. RPP is PRF-complete

RPP is expressive enough to represent the class PRF of Primitive Recursive
Functions [9, 36], which we recall for easy of reference. PRF is the smallest class
of functions on natural numbers that:

• contains the functions 0n(x1, . . . , xn) := 0, the successors Sni (x1, . . . , xn) :=
xi + 1 and the projections Pni (x1, . . . , xn) := xi for all 1 ≤ i ≤ n;

• is closed under composition, viz. PRF includes the function f(−→x ) :=
h(g1(−→x ), . . . , gm(−→x ))) whenever there are g1, . . . , gm, h ∈ PRF of suitable
arity; and,

• is closed under primitive recursion, viz. PRF includes the function f
defined by means of the schema f(−→x , 0) := g(−→x ) and f(−→x , y + 1) :=
h(f(−→x , y),−→x , y) whenever there are g, h ∈ PRF of suitable arity.

In the following, PRFn denotes the class of functions f ∈ PRF with arity n.

Definition 3 (RPP-definability of any f ∈ PRF). Let n, a ∈ N and f ∈ PRFn.
We say that f is RPPn+a+1-definable whenever there is a function df ∈ RPPn+a+1

such that, for every x, x1, . . . , xn ∈ N:

x
x1

· · ·
xn

0a

 df


x + f(x1, . . . , xn)
x1

· · ·
xn

0a .

Three observations are worth doing. Definition 3 relies on a + 1 arguments
used as ancillae. If f ∈ PRFn is RPPn+a+1-definable, then f is also RPPn+k-
definable for any k ≥ a + 1 by using weakening (cf. Section 3). Definition 3
improves the namesake one in [37, Def.3.1, p.236] because it gets rid of an output
line: this line was a “waste bin” containing part of the computation trace that,
eventually, was useless. The encoding proposed in this paper does not need the
“waste bin” anymore.

Theorem 5 (RPP is PRF-complete). If f ∈ PRFn then f is RPPn+a+1-definable,
for some a ∈ N.

Proof. The proof is given by induction on the definition of the primitive re-
cursive function f .

• If f is 0n then let 0n := In+1, where a = 0.

• If f is Sni then let Sni := incn+1
i+1;1 # (S‖In), where a = 0.

• If f is Pni (1 ≤ i ≤ n) then, let Pni := incn+1
i+1;1, where a = 0.

• Let f = ◦[h, g1, . . . , gk] where g1, . . . , gk ∈ PRFn and h ∈ PRFk, for some
k ≥ 1. Therefore, by inductive hypothesis, there are g1 ∈ RPPn+a1+1, . . .,

gk ∈ RPPn+ak+1 and h ∈ RPPk+a0+1 for a0, . . . , ak ∈ N.
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x
x1

· · ·
xn

0m

k



r1
· · ·

ri−1

0

ri+1

· · ·
rk


g∗i



x
x1

· · ·
xn

0m

r1
· · ·
ri−1

gi(x1, . . . , xn)
ri+1

· · ·
rk

x
x1

· · ·
xn

0m

k


0

· · ·
0

 h
∗



x + ◦[h, g1, . . . , gk](x1, . . . , xn)
x1

· · ·
xn

0m

g1(x1, . . . , xn)

· · ·
gk(x1, . . . , xn)

x
x1

· · ·
xn

0m

k


0

· · ·
0

 G



x
x1

· · ·
xn

0m

g1(x1, . . . , xn)

· · ·
gk(x1, . . . , xn)

x
x1

· · ·
xn

0m

0k

 H


x + ◦[h, g1, . . . , gk](x1, . . . , xn)
x1

· · ·
xn

0m

0k

Table 1: Composition component relations

Let m = max{a0, . . . , ak}. By using gi, it is easy to build g∗i ∈ PRFn+m+k+1

computing the reversible permutation described in the top-left of Table 1.
The sequential composition can be used to compute the permutation G de-
scribed in the bottom-left of Table 1. By using G and h, it is easy to compute
h∗ in the top-right of Table 1. Last, H ∈ RPPn+(m+k)+1 in the bottom-right
of Table 1 is ◦[h, g1, . . . , gk] and we define it as h∗ #G−1.

H improves the representation of composition sketched in [37] because it
reduces the number of ancillae by re-using them to compute one after the
other g1, . . . , gk ∈ PRFn and h ∈ PRFk.

• Let f ∈ PRFn where n ≥ 1 be defined by means of the primitive recursion
on g ∈ PRFn−1 and h ∈ PRFn+1. By inductive hypothesis there are g ∈
RPP(n−1)+ag+1 and h ∈ RPP(n+1)+ah+1 for ag, ah ∈ N.

The definition of f requires: (i) a temporary argument to store the result of
the previous recursive call; (ii) a temporary argument to stack intermediate
results; (iii) a temporary argument to index the current iteration step; (iv) a
temporary argument to contain the final result which is not modified when
the computation is undone for cleaning temporary values; and (v) in different
times, as many temporary arguments as ag to compute g, as many temporary

arguments as ah to compute h and 10 ancillae to push and pop elements in
the course of the computation (see Proposition 4.)

Let a := 4 + max{ag, ah, 10}. Our goal is to define f ∈ RPPn+a+1 which
behaves as described in the left of Table 2:
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x
x1

· · ·
xn

0
· · ·

0

04

 f


f(x1, . . . , xn)

x1

· · ·
xn

0
· · ·
0

max{ag, ah, 10}

04

0
r

x1

· · ·
xn−1

i

0a−4

S

 hstep



0

h(r, x1, . . . , xn−1, i)
x1

· · ·
xn−1

i + 1

0a−4

〈r,S〉

Table 2: Primitive Recursion Components

1. A first block of operations which we call F1 reorganizes the inputs of f

in Table 2 to obtain 0, 0, x1, . . . , xn−1,

a−2︷ ︸︸ ︷
0, . . . , 0, xn, x.

2. The result of the previous step becomes the input of I1‖ g‖Ia−ag which

yields 0, g(x1, . . . , xn−1), x1, . . . , xn−1,

a−2︷ ︸︸ ︷
0, . . . , 0, xn, x. We notice that xn

is the argument that drives the iteration.

3. The previous point supplies the arguments to the xn-times applications
of the recursive step:

hstep := (h‖Ia−(ah+2)) # Sn+a−1
n+2 # pushn+a−1

2;n+a−1 # (χ‖In+a−3)

by means of It [hstep]‖I1. The relation that hstep implements is depicted
in Table 2. Thus, hstep takes n+ a− 1 input arguments only among the
n+a+1 available because the first one serves to the identity and the other
one drives the iteration. The function of hstep first applies h and then re-
organizes arguments for the next iteration. Specifically, (i) it increments
the step-index in the argument of position (n+2), (ii) it pushes the result
of the previous step, which is in position 2, on top of the stack , which
is in its last ancilla, (iii) it exchanges the first two arguments, the first
one containing the result of the last iterative step and the second one
containing a fresh zero produced by push.

4. We get 0, f(x1, . . . , xn), x1, . . . , xn−1, xn,

a−2︷ ︸︸ ︷
0, . . . , 0, xn, x from the previous

point. We add the result to the last line by means of inc2;n+a+1 by yielding

0, f(x1, . . . , xn), x1, . . . , xn−1, xn,

a−2︷ ︸︸ ︷
0, . . . , 0, xn, x+ f(x1, . . . , xn).

5. We then conclude by unwinding the first three steps.

Summing up, h is:

F1#
(
I1‖ g‖Ia−ag

)
#
(
It [hstep]‖I1

)
#inc2;n+a+1#

(
It [hstep]‖I1

)−1#
(
I1‖ g‖Ia−ag

)−1#F1
−1 .
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6.2. RPP is PRF-sound

The mere intuition should support the evidence that every f ∈ RPP has a
representative inside PRF we can obtain via the bijection which exists between
Z and N. More precisely, every RPP-permutation can be represented as a PRF-
endofunction on tuples of natural numbers which encode integers. Details on
how formalizing the embedding of RPP into PRF are in [37].

7. Conclusions

In this paper we introduce the class RPP of functions which (i) is closed
under inversion, (ii) is both PRF-complete and PRF-sound, (iii) provides a rea-
sonable balance between conciseness and easiness of usage, suitable for recursion
theoretical analysis, (vi) is a good candidate for extensions able to encompass
recursive bijections which are not strictly total endo-functions — and recursive
partial functions and (v) which is a good starting point to formalize classical
results about the recursion theory in reversible settings.

We add some final comments on intensional aspects of RPP.

7.1. RPP and Ackermann

Let A be the Ackermann function, example of total computable function
with two arguments that cannot belong to PRF because its growth rate is too
high. Kuznecov shows that a primitive recursive function F exists with input
arity 1 such that F−1(x) = A(x, x). It is worth to remark that the inverse of
F is not primitive recursive, because A is not. References are not immediate,
because the original result [19] is in Russian: some details about Kuznecov’s
proof are in [37, 45] [39, 45] . Moreover in [46, Exercise 5.7, p.25] Kuznecov’s ?
result is slightly reformulated by the statement saying that “primitive recursive
functions do not form a group under composition.”

By Theorem 5, the function:

w
z

0k

[
F

]
w + F (z)
z

0k

exists and belongs to RPP, for some k. Proposition 1 implies that F
−1

is in
RPP, is computable and is such that:

w
z

0k

[
F

]
w + F (z)

z

0k

[
F
−1

]
w
z

0k
.

This highlights the strongly intensional nature of the reversible functions inside

RPP. The inversion of a permutation p undoes what p executes, so F
−1

algo-
rithmically searches the value x such that A(x, x) = z, for any given argument
z we can pass to F , by using F (z) as bound for the iteration.
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7.2. RPP and no-cloning

A form of no-cloning theorem holds in the setting of reversible computing in
analogy with the no-colning theorem for the quantum computing.

Theorem 6 (No-cloning theorem [30]). Let Zk+2 → Zk+2 represent the class
of permutations with arity k + 2, for any fixed k ∈ N. Let i 6= j belong to the
initial segment [1, k + 2] of N such that i and j identify two arguments of the
permutations in Zk+2 → Zk+2. No permutation can always return the same
value on the arguments of position i and j, independently of their values.

Proof. Permutations are bijections. So they are surjections which necessarily
range over the whole co-domain.

Quoting from [35, p.530]: “. . . the no-cloning theorem states that quantum me-
chanics does not allow unknown quantum states to be copied exactly, and places
severe limitations on our ability to make approximate copies . . . [however ] the
no-cloning theorem does not prevent all quantum states from being copied, it
simply says that non-orthogonal quantum states cannot be copied.”

The moral is that cloning is not available if we deal with quantum com-
putations in general. However, in some cases programming strategies exist to
circumvent Theorem 6 and we can use them for cloning when we move inside
reversible computing. Cloning strategies boil down to using ancillary variables
constrained to assume specific values. As a simple instance, the general incre-
ment incj;i of Section 4 clones — builds an exact a copy of — the j-th argument
in its i-th argument exactly when this latter initially assumes value 0.

7.3. Ancillae in RPP

In the previous subsection we refer to ancillae as tools to circumvent no-
cloning. For remarking once more that ancillae are harmless as far as reversible
computing is concerned we focus on reversible computation as formalized by
means of reversible Turing-machines (RTM) [1, 2, 3, 13]. This is like saying that
a function is reversible when, and only when, some RTM exists that computes
it. Any RTM crucially relies on an infinite tape that contains infinite blank cells:
they supply an unbounded amount of ancillae that the computations can use
at will. An RTM allows to duplicate data at the cost of using states to recall
where and how many copies are generated, in order to revert the computation.
This does not break the property of being in front of reversible computations.
By the way, interesting discussions exist on how taking advantage from limited
irreversible erasures on the ancillary tape when simulating irreversible compu-
tations inside reversible ones [4, 5, 25].

Turning our focus back on RPP we emphasize that our assumptions are analo-
gous to those ones just recalled when working with RTM for simulating standard
Turing-machines. We recall that RPP contains permutations only (Definition 1)
and that no zero-constant function exist in it. The formalization of how the sim-
ulation works follows a path which is standard when comparing computational
models [9, 28, 36]. For example, representing a function by a Turing-machine
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requires to fix how supplying data on the initial tape and where initially posi-
tioning its head. Concerning RPP, its simulation of PRF exploits permutations
purposefully devised to behave as required when we supply the value 0 to some
specific arguments, the ancillae. Summarizing, we define restriction-less per-
mutations which behave as required as soon as the simulation conventions are
satisfied.

8. Future work

We briefly discuss some of the possible directions we can follow to develop
this work.

The formalization of RPP adhere to a standard recursion theory approach
to identify computational classes. We see RPP as a formalism which lies at the
same level of abstraction as the imperative programming languages SRL, and
similar, that Matos introduces for dealing with reversible computations [29, 30].
So, we are focused on aspects more closely related to the design of paradigmatic
programming languages. For example, an open question is whether RPP and
SRL are equivalent. Answering it amounts to show that the selection — a built-
in axiom of RPP — can be simulated in SRL.

Despite RPP is not a real programming language it can be a good place to
start from for conceiving one. Even though the design of RPP does not start
with the aim of computing with isomorphisms among types, like the point-
free languages of [15, 34], most of the programming examples we give with it
are point-free, especially when we iterate or select functions. Moreover, multiple
input and output arity can be at the base of the representation and manipulation
of immutable data structures like arrays. In the lines of [47], no obstacle seems
to exist against the introduction of primitives that hide ancillae with the aim
of simplifying programming. Finally, RPP looks flexible enough to incorporate
specific bijections with different input and output arity like in [50]. This would
extend RPP to a class of functions which are not necessarily permutations.

On the model theoretic point of view, it is obvious that RPP and of Lafont’s ?
circuit classes in [21] share the same construction principles. Besides basic func-
tions and two composition schemes, RPP has iteration and selection schemes
by means of which, for example, we can give compressed descriptions of La-
font’s circuits. Since RPP is PRF-complete a relation with Burroni’s category
of primitive recursive functions in [6] has to exist. Formalizing it will require
to investigate on the link between the formalizations of the natural numbers ?
that the two approaches pursue. The categorical approach in [6] relies on a
Peano-Lawvere axiom [23]. Instead, RPP see numbers in a Peano style, even
though RPP does not contain any function which is constantly equal to 0.

Of course, the categorical structure in [6] is not the only one we can focus
on to say what a model of RPP is. Models of RPP might well be instances of
reversible PRO already used to study feedback-free reversible circuits [6, 7, 20,
21, 22]. Also, we would not be surprised we could use the category PInj of sets
and functional injective relations as model of RPP, already used in [38] as a
model of Janus, a reversible imperative programming language [26, 51].
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Finally there is a quite close resemblance between the stack mechanism we
implement to show that RPP is PRF-complete and the pebble game used to
assess how efficient the simulation of a reversible computation by means of an
irreversible one is [25, 4]. Given that RPP suggests a programming style where
a computation can be undone as soon as the result it produces is at hand, and
observing that information is piled up by coding it numerically, we plan to study
if this features keep the overhead of the PRF simulation by means of RPP within
an interesting range of space complexity.
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