36,526 research outputs found

    QMET : A new quality assessment metric for no-reference video coding by using human eye traversal

    Get PDF
    The subjective quality assessment (SQA) is an ever demanding approach due to its in-depth interactivity to the human cognition. The addition of no-reference based scheme could equip the SQA techniques to tackle further challenges. Existing widely used objective metrics-peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) or the subjective estimator-mean opinion score (MOS) requires original image for quality evaluation that limits their uses for the situation having no-reference. In this work, we present a no-reference based SQA technique that could be an impressive substitute to the reference-based approaches for quality evaluation. The High Efficiency Video Coding (HEVC) reference test model (HM15.0) is first exploited to generate five different qualities of the HEVC recommended eight class sequences. To assess different aspects of coded video quality, a group of ten participants are employed and their eye-tracker (ET) recorded data demonstrate closer correlation among gaze plots for relatively better quality video contents. Therefore, we innovatively calculate the amount of approximation of smooth eye traversal (ASET) by using distance, angle, and pupil-size feature from recorded gaze trajectory data and develop a new-quality metric based on eye traversal (QMET). Experimental results show that the quality evaluation carried out by QMET is highly correlated to the HM recommended coding quality. The performance of the QMET is also compared with the PSNR and SSIM metrics to justify the effectiveness of each other.International Conference Image and Vision Computing New Zealan

    A Detail Based Method for Linear Full Reference Image Quality Prediction

    Full text link
    In this paper, a novel Full Reference method is proposed for image quality assessment, using the combination of two separate metrics to measure the perceptually distinct impact of detail losses and of spurious details. To this purpose, the gradient of the impaired image is locally decomposed as a predicted version of the original gradient, plus a gradient residual. It is assumed that the detail attenuation identifies the detail loss, whereas the gradient residuals describe the spurious details. It turns out that the perceptual impact of detail losses is roughly linear with the loss of the positional Fisher information, while the perceptual impact of the spurious details is roughly proportional to a logarithmic measure of the signal to residual ratio. The affine combination of these two metrics forms a new index strongly correlated with the empirical Differential Mean Opinion Score (DMOS) for a significant class of image impairments, as verified for three independent popular databases. The method allowed alignment and merging of DMOS data coming from these different databases to a common DMOS scale by affine transformations. Unexpectedly, the DMOS scale setting is possible by the analysis of a single image affected by additive noise.Comment: 15 pages, 9 figures. Copyright notice: The paper has been accepted for publication on the IEEE Trans. on Image Processing on 19/09/2017 and the copyright has been transferred to the IEE
    • …
    corecore