6 research outputs found

    From Small-Gain Theory to Compositional Construction of Barrier Certificates for Large-Scale Stochastic Systems

    Full text link
    This paper is concerned with a compositional approach for the construction of control barrier certificates for large-scale interconnected stochastic systems while synthesizing hybrid controllers against high-level logic properties. Our proposed methodology involves decomposition of interconnected systems into smaller subsystems and leverages the notion of control sub-barrier certificates of subsystems, enabling one to construct control barrier certificates of interconnected systems by employing some max\max-type small-gain conditions. The main goal is to synthesize hybrid controllers enforcing complex logic properties including the ones represented by the accepting language of deterministic finite automata (DFA), while providing probabilistic guarantees on the satisfaction of given specifications in bounded-time horizons. To do so, we propose a systematic approach to first decompose high-level specifications into simple reachability tasks by utilizing automata corresponding to the complement of specifications. We then construct control sub-barrier certificates and synthesize local controllers for those simpler tasks and combine them to obtain a hybrid controller that ensures satisfaction of the complex specification with some lower-bound on the probability of satisfaction. To compute control sub-barrier certificates and corresponding local controllers, we provide two systematic approaches based on sum-of-squares (SOS) optimization program and counter-example guided inductive synthesis (CEGIS) framework. We finally apply our proposed techniques to two physical case studies

    Inductive Certificate Synthesis for Control Design

    Get PDF
    The focus of this thesis is developing a framework for designing correct-by-construction controllers using control certificates. We use nonlinear dynamical systems to model the physical environment (plants). The goal is to synthesize controllers for these plants while guaranteeing formal correctness w.r.t. given specifications. We consider different fundamental specifications including stability, safety, and reach-while-stay. Stability specification states that the execution traces of the system remain close to an equilibrium state and approach it asymptotically. Safety specification requires the execution traces to stay in a safe region. Finally, for reach-while-stay specification, safety is needed until a target set is reached.The design task consists of two phases. In the first phase, the control design problem is reduced to the question of finding a control certificate. More precisely, the goal of the first phase is to define a class of control certificates with a specific structure. This definition should guarantee the following: ``Having a control certificate, one can systematically design a controller and prove its correctness at the same time."The goal in the second phase is to find such a control certificate. We define a potential control certificate space (hypothesis space) using parameterized functions. Next, we provide an inductive search framework to find proper parameters, which yield a control certificate. Finally, we evaluate our framework. We show that discovering control certificates is practically feasible and demonstrate the effectiveness of the automatically designed controllers through simulations and real physical systems experiments
    corecore