105,497 research outputs found

    AED: An Anytime Evolutionary DCOP Algorithm

    Get PDF
    Evolutionary optimization is a generic population-based metaheuristic that can be adapted to solve a wide variety of optimization problems and has proven very effective for combinatorial optimization problems. However, the potential of this metaheuristic has not been utilized in Distributed Constraint Optimization Problems (DCOPs), a well-known class of combinatorial optimization problems prevalent in Multi-Agent Systems. In this paper, we present a novel population-based algorithm, Anytime Evolutionary DCOP (AED), that uses evolutionary optimization to solve DCOPs. In AED, the agents cooperatively construct an initial set of random solutions and gradually improve them through a new mechanism that considers an optimistic approximation of local benefits. Moreover, we present a new anytime update mechanism for AED that identifies the best among a distributed set of candidate solutions and notifies all the agents when a new best is found. In our theoretical analysis, we prove that AED is anytime. Finally, we present empirical results indicating AED outperforms the state-of-the-art DCOP algorithms in terms of solution quality.Comment: 9 pages, 6 figures, 2 tables. Appeared in the proceedings of the 19th International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2020

    Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Event Scheduling

    Get PDF
    Distributed Constraint Optimization (DCOP) is an elegant formalism relevant to many areas in multiagent systems, yet complete algorithms have not been pursued for real world applications due to perceived complexity. To capably capture a rich class of complex problem domains, we introduce the Distributed Multi-Event Scheduling (DiMES) framework and design congruent DCOP formulations with binary constraints which are proven to yield the optimal solution. To approach real-world efficiency requirements, we obtain immense speedups by improving communication structure and precomputing best case bounds. Heuristics for generating better communication structures and calculating bound in a distributed manner are provided and tested on systematically developed domains for meeting scheduling and sensor networks, exemplifying the viability of complete algorithms. 1

    Distributed Partitioned Big-Data Optimization via Asynchronous Dual Decomposition

    Full text link
    In this paper we consider a novel partitioned framework for distributed optimization in peer-to-peer networks. In several important applications the agents of a network have to solve an optimization problem with two key features: (i) the dimension of the decision variable depends on the network size, and (ii) cost function and constraints have a sparsity structure related to the communication graph. For this class of problems a straightforward application of existing consensus methods would show two inefficiencies: poor scalability and redundancy of shared information. We propose an asynchronous distributed algorithm, based on dual decomposition and coordinate methods, to solve partitioned optimization problems. We show that, by exploiting the problem structure, the solution can be partitioned among the nodes, so that each node just stores a local copy of a portion of the decision variable (rather than a copy of the entire decision vector) and solves a small-scale local problem

    A Parameterisation of Algorithms for Distributed Constraint Optimisation via Potential Games

    No full text
    This paper introduces a parameterisation of learning algorithms for distributed constraint optimisation problems (DCOPs). This parameterisation encompasses many algorithms developed in both the computer science and game theory literatures. It is built on our insight that when formulated as noncooperative games, DCOPs form a subset of the class of potential games. This result allows us to prove convergence properties of algorithms developed in the computer science literature using game theoretic methods. Furthermore, our parameterisation can assist system designers by making the pros and cons of, and the synergies between, the various DCOP algorithm components clear
    corecore