293,913 research outputs found

    Locally finite near-fields

    No full text
    A near-field is locally finite if every finite subset of it generates a finite sub-near-field. The main aim of this thesis is to give a coherent account of locally finite-near-fields, including finite ones. The well known results for finite near-fields are lised and proofs are given where appropriate. The results of Zassenhaus classify finite regular near-fields according to their order, pln, and the order of centres, pl, and Luneburg has determined the number of isomorphism types within each class. A polynomial h is given here which, together with the triple p, l, n, completely determines a finite regular near-field, up to isomorphism. The sub-near-field structure is determined in terms of these invariants and some results concerning near-field embeddings are included

    A Monte Carlo study of surface critical phenomena: The special point

    Full text link
    We study the special point in the phase diagram of a semi-infinite system, where the bulk transition is in the three-dimensional Ising universality class. To this end we perform a finite size scaling study of the improved Blume-Capel model on the simple cubic lattice with two different types of surface interactions. In order to check for the effect of leading bulk corrections we have also simulated the spin-1/2 Ising model on the simple cubic lattice. We have accurately estimated the surface enhancement coupling at the special point of these models. We find yts=0.718(2)y_{t_s}=0.718(2) and yhs=1.6465(6)y_{h_s}=1.6465(6) for the surface renormalization group exponents of the special transitions. These results are compared with previous ones obtained by using field theoretic methods and Monte Carlo simulations of the spin-1/2 Ising model. Furthermore we study the behaviour of the surface transition near the special point and finally we discuss films with special boundary conditions at one surface and fixed ones at the other.Comment: 21 pages, 2 figures. figure 1 replaced, various typos correcte

    On semi-finite hexagons of order (2,t)(2, t) containing a subhexagon

    Get PDF
    The research in this paper was motivated by one of the most important open problems in the theory of generalized polygons, namely the existence problem for semi-finite thick generalized polygons. We show here that no semi-finite generalized hexagon of order (2,t)(2,t) can have a subhexagon HH of order 22. Such a subhexagon is necessarily isomorphic to the split Cayley generalized hexagon H(2)H(2) or its point-line dual HD(2)H^D(2). In fact, the employed techniques allow us to prove a stronger result. We show that every near hexagon S\mathcal{S} of order (2,t)(2,t) which contains a generalized hexagon HH of order 22 as an isometrically embedded subgeometry must be finite. Moreover, if H≅HD(2)H \cong H^D(2) then S\mathcal{S} must also be a generalized hexagon, and consequently isomorphic to either HD(2)H^D(2) or the dual twisted triality hexagon T(2,8)T(2,8).Comment: 21 pages; new corrected proofs of Lemmas 4.6 and 4.7; earlier proofs worked for generalized hexagons but not near hexagon

    Curvature tensors on distorted Killing horizons and their algebraic classification

    Full text link
    We consider generic static spacetimes with Killing horizons and study properties of curvature tensors in the horizon limit. It is determined that the Weyl, Ricci, Riemann and Einstein tensors are algebraically special and mutually aligned on the horizon. It is also pointed out that results obtained in the tetrad adjusted to a static observer in general differ from those obtained in a free-falling frame. This is connected to the fact that a static observer becomes null on the horizon. It is also shown that finiteness of the Kretschmann scalar on the horizon is compatible with the divergence of the Weyl component Ψ3\Psi_{3} or Ψ4\Psi_{4} in the freely falling frame. Furthermore finiteness of Ψ4\Psi_{4} is compatible with divergence of curvature invariants constructed from second derivatives of the Riemann tensor. We call the objects with finite Krestschmann scalar but infinite Ψ4\Psi_{4} ``truly naked black holes''. In the (ultra)extremal versions of these objects the structure of the Einstein tensor on the horizon changes due to extra terms as compared to the usual horizons, the null energy condition being violated at some portions of the horizon surface. The demand to rule out such divergencies leads to the constancy of the factor that governs the leading term in the asymptotics of the lapse function and in this sense represents a formal analog of the zeroth law of mechanics of non-extremal black holes. In doing so, all extra terms in the Einstein tensor automatically vanish.Comment: 21 pages, To appear in Class. Quant. Gra
    • …
    corecore