8 research outputs found

    Ontologies and Bigram-based approach for Isolated Non-word Errors Correction in OCR System

    Get PDF
    In this paper, we describe a new and original approach for post-processing step in an OCR system. This approach is based on new method of spelling correction to correct automatically misspelled words resulting from a character recognition step of scanned documents by combining both ontologies and bigram code in order to create a robust system able to solve automatically the anomalies of classical approaches. The proposed approach is based on a hybrid method which is spread over two stages, first one is character recognition by using the ontological model and the second one is word recognition based on spelling correction approach based on bigram codification for detection and correction of errors. The spelling error is broadly classified in two categories namely non-word error and real-word error. In this paper, we interested only on detection and correction of non-word errors because this is the only type of errors treated by an OCR. In addition, the use of an online external resource such as WordNet proves necessary to improve its performances

    How does language model size effects speech recognition accuracy for the Turkish language?

    Get PDF
    In this paper we aimed at investigating the effect of Language Model (LM) size on Speech Recognition (SR) accuracy. We also provided details of our approach for obtaining the LM for Turkish. Since LM is obtained by statistical processing of raw text, we expect that by increasing the size of available data for training the LM, SR accuracy will improve. Since this study is based on recognition of Turkish, which is a highly agglutinative language, it is important to find out the appropriate size for the training data. The minimum required data size is expected to be much higher than the data needed to train a language model for a language with low level of agglutination such as English. In the experiments we also tried to adjust the Language Model Weight (LMW) and Active Token Count (ATC) parameters of LM as these are expected to be different for a highly agglutinative language. We showed that by increasing the training data size to an appropriate level, the recognition accuracy improved on the other hand changes on LMW and ATC did not have a positive effect on Turkish speech recognition accuracy.</span

    Integrating Dictionary and Web N-grams for Chinese Spell Checking

    Get PDF
    Abstract Chinese spell checking is an important component of many NLP applications, including word processors, search engines, and automatic essay rating. Nevertheless, compared to spell checkers for alphabetical languages (e.g., English or French), Chinese spell checkers are more difficult to develop because there are no word boundaries in the Chinese writing system and errors may be caused by various Chinese input methods. In this paper, we propose a novel method for detecting and correcting Chinese typographical errors. Our approach involves word segmentation, detection rules, and phrase-based machine translation. The error detection module detects errors by segmenting words and checking word and phrase frequency based on compiled and Web corpora. The phonological or morphological typographical errors found then are corrected by running a decoder based on the statistical machine translation model (SMT). The results show that the proposed system achieves significantly better accuracy in error detection and more satisfactory performance in error correction than the state-of-the-art systems

    Spell Checking and Correction for Arabic Text Recognition

    Get PDF

    Spell Checking and Correction for Arabic Text Recognition

    Get PDF

    Advanced document data extraction techniques to improve supply chain performance

    Get PDF
    In this thesis, a novel machine learning technique to extract text-based information from scanned images has been developed. This information extraction is performed in the context of scanned invoices and bills used in financial transactions. These financial transactions contain a considerable amount of data that must be extracted, refined, and stored digitally before it can be used for analysis. Converting this data into a digital format is often a time-consuming process. Automation and data optimisation show promise as methods for reducing the time required and the cost of Supply Chain Management (SCM) processes, especially Supplier Invoice Management (SIM), Financial Supply Chain Management (FSCM) and Supply Chain procurement processes. This thesis uses a cross-disciplinary approach involving Computer Science and Operational Management to explore the benefit of automated invoice data extraction in business and its impact on SCM. The study adopts a multimethod approach based on empirical research, surveys, and interviews performed on selected companies.The expert system developed in this thesis focuses on two distinct areas of research: Text/Object Detection and Text Extraction. For Text/Object Detection, the Faster R-CNN model was analysed. While this model yields outstanding results in terms of object detection, it is limited by poor performance when image quality is low. The Generative Adversarial Network (GAN) model is proposed in response to this limitation. The GAN model is a generator network that is implemented with the help of the Faster R-CNN model and a discriminator that relies on PatchGAN. The output of the GAN model is text data with bonding boxes. For text extraction from the bounding box, a novel data extraction framework consisting of various processes including XML processing in case of existing OCR engine, bounding box pre-processing, text clean up, OCR error correction, spell check, type check, pattern-based matching, and finally, a learning mechanism for automatizing future data extraction was designed. Whichever fields the system can extract successfully are provided in key-value format.The efficiency of the proposed system was validated using existing datasets such as SROIE and VATI. Real-time data was validated using invoices that were collected by two companies that provide invoice automation services in various countries. Currently, these scanned invoices are sent to an OCR system such as OmniPage, Tesseract, or ABBYY FRE to extract text blocks and later, a rule-based engine is used to extract relevant data. While the system’s methodology is robust, the companies surveyed were not satisfied with its accuracy. Thus, they sought out new, optimized solutions. To confirm the results, the engines were used to return XML-based files with text and metadata identified. The output XML data was then fed into this new system for information extraction. This system uses the existing OCR engine and a novel, self-adaptive, learning-based OCR engine. This new engine is based on the GAN model for better text identification. Experiments were conducted on various invoice formats to further test and refine its extraction capabilities. For cost optimisation and the analysis of spend classification, additional data were provided by another company in London that holds expertise in reducing their clients' procurement costs. This data was fed into our system to get a deeper level of spend classification and categorisation. This helped the company to reduce its reliance on human effort and allowed for greater efficiency in comparison with the process of performing similar tasks manually using excel sheets and Business Intelligence (BI) tools.The intention behind the development of this novel methodology was twofold. First, to test and develop a novel solution that does not depend on any specific OCR technology. Second, to increase the information extraction accuracy factor over that of existing methodologies. Finally, it evaluates the real-world need for the system and the impact it would have on SCM. This newly developed method is generic and can extract text from any given invoice, making it a valuable tool for optimizing SCM. In addition, the system uses a template-matching approach to ensure the quality of the extracted information
    corecore