11 research outputs found

    Maximizing the self-consumption of Solar-PV using Battery Energy Storage System in Samso-Marina

    Get PDF

    Active distribution power system with multi-terminal DC links

    Get PDF
    A fast power restoration operational scheme and relevant stabilizing control is proposed for active distribution power systems with multi-terminal DC network in replacement of the conventional normal open switches. A 9-feeder benchmark distribution power system is established with a 4-terminal medium power DC system injected. The proposed power restoration scheme is based on the coordination among distributed control among relays, load switches, voltage source converters and autonomous operation of multi-terminal DC system. A DC stabilizer is proposed with virtual impedance method to damp out potential oscillation caused by constant power load terminals. The proposed system and controls are validated by frequency domain state space model and time domain case study with Matlab/Simulink

    Stochastic planning of electric vehicle charging station integrated with photovoltaic and battery systems

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/166260/1/gtd2bf00020.pd

    Optimal Operation Scheduling of a Microgrid Incorporating Battery Swapping Stations

    Get PDF

    Aviation-to-Grid Flexibility through Electric Aircraft Charging

    Get PDF
    EPSRC Supergen Energy Networks Hub (grant number: EP/S00078X/1): ‘GRid flexibility by Electrifying Energy Networks for Airport (GREEN Airport)’; UK Department for Transport Transport-Technology Research Innovation Grant (T-TRIG 2019): ‘Aircraft to Grid: Hybrid and Smart Charging for Electric Aircraft’

    Optimization and Integration of Electric Vehicle Charging System in Coupled Transportation and Distribution Networks

    Get PDF
    With the development of the EV market, the demand for charging facilities is growing rapidly. The rapid increase in Electric Vehicle and different market factors bring challenges to the prediction of the penetration rate of EV number. The estimates of the uptake rate of EVs for light passenger use vary widely with some scenarios gradual and others aggressive. And there have been many effects on EV penetration rate from incentives, tax breaks, and market price. Given this background, this research is devoted to addressing a stochastic joint planning framework for both EV charging system and distribution network where the EV behaviours in both transportation network and electrical system are considered. And the planning issue is formulated as a multi-objective model with both the capital investment cost and service convenience optimized. The optimal planning of EV charging system in the urban area is the target geographical planning area in this work where the service radius and driving distance is relatively limited. The mathematical modelling of EV driving and charging behaviour in the urban area is developed

    Aggregated DER Management in Advanced Distribution Grids

    Get PDF
    Evolution of modern power systems are more distinct in distribution grids, where the growing integration of microgrids as well as distributed energy resources (DERs), including renewable energy resources, electric vehicles (EVs), and energy storage, poses new challenges and opportunities to grid management and operation. Rapid growth of distribution automation as well as equipment monitoring technologies in the distribution grids further offer new opportunities for distribution asset management. The idea of aggregated DERs is proposed as a remedy to streamline management and operation of advanced distribution grids, as discussed under three subjects in this dissertation. The first subject matter focuses on DER aggregation in microgrid for distribution transformer asset management, while the second one stresses on aggregated DER for developing a spinning reserve-based optimal scheduling model of integrated microgrids. The aggregation of EV batteries in a battery swapping stations (BSS) for enhancing grid operation is investigated in the third subject. Distribution transformer, as the most critical component in the distribution grids, is selected as the component of the choice for asset management practices, where three asset management studies are proposed. First, an approach in estimating transformer lifetime is presented based on the IEEE Std. C57.91-2011 and using sensory data. Second, a methodology to obtain a low-error estimate of transformer loss-of-life is investigated, leveraging an integrated machine learning and data fusion technique. Finally, a microgrid-based distribution transformer asset management model is developed to prolong the transformer lifetime. The resulting model aims at reshaping the distribution transformer loading via aggregating microgrid DERs in an efficient and asset management-aware manner. The increasing penetration of microgrids in distribution grids sets the stage for the formation of multiple microgrids in an integrated fashion. Accordingly, a spinning reserved based optimal scheduling model for integrated microgrids is proposed to minimize not only the operation cost associated with all microgrids in the grid-connected operation, but also the costs of power deficiency and spinning reserve in the islanded operation mode. The resulting model aims at determining an optimal configuration of the system in the islanded operation, i.e., optimal super-holons combination, which plays a key role in minimizing the system-aggregated operation cost and improving the overall system reliability. The evolving distribution grids introduce the concept of the BSS, which is emerging as a viable means for fast energy refill of EVs, to offer energy and ancillary services to the distribution grids through DER aggregation. Using a mixed-integer linear programming method, an uncertainty-constrained BSS optimal operation model is presented that not only covers the random customer demands of fully charged batteries, but also focuses on aggregating the available distributed batteries in the BSS to reduce its operation cost. Furthermore, the BSS is introduced as an energy storage for mitigating solar photovoltaic (PV) output fluctuations, where the distributed batteries in the BSS are modeled as an aggregated energy storage to capture solar generation variability. Numerical simulations demonstrate the effectiveness of the proposed models as well as their respective viability in achieving the predefined operational objectives
    corecore