3,355 research outputs found

    On the limiting distribution of the metric dimension for random forests

    Get PDF
    The metric dimension of a graph G is the minimum size of a subset S of vertices of G such that all other vertices are uniquely determined by their distances to the vertices in S. In this paper we investigate the metric dimension for two different models of random forests, in each case obtaining normal limit distributions for this parameter.Comment: 22 pages, 5 figure

    Analytic urns

    Full text link
    This article describes a purely analytic approach to urn models of the generalized or extended P\'olya-Eggenberger type, in the case of two types of balls and constant ``balance,'' that is, constant row sum. The treatment starts from a quasilinear first-order partial differential equation associated with a combinatorial renormalization of the model and bases itself on elementary conformal mapping arguments coupled with singularity analysis techniques. Probabilistic consequences in the case of ``subtractive'' urns are new representations for the probability distribution of the urn's composition at any time n, structural information on the shape of moments of all orders, estimates of the speed of convergence to the Gaussian limit and an explicit determination of the associated large deviation function. In the general case, analytic solutions involve Abelian integrals over the Fermat curve x^h+y^h=1. Several urn models, including a classical one associated with balanced trees (2-3 trees and fringe-balanced search trees) and related to a previous study of Panholzer and Prodinger, as well as all urns of balance 1 or 2 and a sporadic urn of balance 3, are shown to admit of explicit representations in terms of Weierstra\ss elliptic functions: these elliptic models appear precisely to correspond to regular tessellations of the Euclidean plane.Comment: Published at http://dx.doi.org/10.1214/009117905000000026 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Enumerating five families of pattern-avoiding inversion sequences; and introducing the powered Catalan numbers

    Full text link
    The first problem addressed by this article is the enumeration of some families of pattern-avoiding inversion sequences. We solve some enumerative conjectures left open by the foundational work on the topics by Corteel et al., some of these being also solved independently by Lin, and Kim and Lin. The strength of our approach is its robustness: we enumerate four families F1F2F3F4F_1 \subset F_2 \subset F_3 \subset F_4 of pattern-avoiding inversion sequences ordered by inclusion using the same approach. More precisely, we provide a generating tree (with associated succession rule) for each family FiF_i which generalizes the one for the family Fi1F_{i-1}. The second topic of the paper is the enumeration of a fifth family F5F_5 of pattern-avoiding inversion sequences (containing F4F_4). This enumeration is also solved \emph{via} a succession rule, which however does not generalize the one for F4F_4. The associated enumeration sequence, which we call the \emph{powered Catalan numbers}, is quite intriguing, and further investigated. We provide two different succession rules for it, denoted ΩpCat\Omega_{pCat} and Ωsteady\Omega_{steady}, and show that they define two types of families enumerated by powered Catalan numbers. Among such families, we introduce the \emph{steady paths}, which are naturally associated with Ωsteady\Omega_{steady}. They allow us to bridge the gap between the two types of families enumerated by powered Catalan numbers: indeed, we provide a size-preserving bijection between steady paths and valley-marked Dyck paths (which are naturally associated with ΩpCat\Omega_{pCat}). Along the way, we provide several nice connections to families of permutations defined by the avoidance of vincular patterns, and some enumerative conjectures.Comment: V2 includes modifications suggested by referees (in particular, a much shorter Section 3, to account for arXiv:1706.07213

    Mod-Gaussian convergence and its applications for models of statistical mechanics

    Full text link
    In this paper we complete our understanding of the role played by the limiting (or residue) function in the context of mod-Gaussian convergence. The question about the probabilistic interpretation of such functions was initially raised by Marc Yor. After recalling our recent result which interprets the limiting function as a measure of "breaking of symmetry" in the Gaussian approximation in the framework of general central limit theorems type results, we introduce the framework of L1L^1-mod-Gaussian convergence in which the residue function is obtained as (up to a normalizing factor) the probability density of some sequences of random variables converging in law after a change of probability measure. In particular we recover some celebrated results due to Ellis and Newman on the convergence in law of dependent random variables arising in statistical mechanics. We complete our results by giving an alternative approach to the Stein method to obtain the rate of convergence in the Ellis-Newman convergence theorem and by proving a new local limit theorem. More generally we illustrate our results with simple models from statistical mechanics.Comment: 49 pages, 21 figure
    corecore