27,924 research outputs found

    A categorical characterization of relative entropy on standard Borel spaces

    Get PDF
    We give a categorical treatment, in the spirit of Baez and Fritz, of relative entropy for probability distributions defined on standard Borel spaces. We define a category suitable for reasoning about statistical inference on standard Borel spaces. We define relative entropy as a functor into Lawvere's category and we show convexity, lower semicontinuity and uniqueness.Comment: 16 page

    Multiwinner Analogues of Plurality Rule: Axiomatic and Algorithmic Perspectives

    Full text link
    We characterize the class of committee scoring rules that satisfy the fixed-majority criterion. In some sense, the committee scoring rules in this class are multiwinner analogues of the single-winner Plurality rule, which is uniquely characterized as the only single-winner scoring rule that satisfies the simple majority criterion. We define top-kk-counting committee scoring rules and show that the fixed majority consistent rules are a subclass of the top-kk-counting rules. We give necessary and sufficient conditions for a top-kk-counting rule to satisfy the fixed-majority criterion. We find that, for most of the rules in our new class, the complexity of winner determination is high (that is, the problem of computing the winners is NP-hard), but we also show examples of rules with polynomial-time winner determination procedures. For some of the computationally hard rules, we provide either exact FPT algorithms or approximate polynomial-time algorithms

    Local proper scoring rules of order two

    Full text link
    Scoring rules assess the quality of probabilistic forecasts, by assigning a numerical score based on the predictive distribution and on the event or value that materializes. A scoring rule is proper if it encourages truthful reporting. It is local of order kk if the score depends on the predictive density only through its value and the values of its derivatives of order up to kk at the realizing event. Complementing fundamental recent work by Parry, Dawid and Lauritzen, we characterize the local proper scoring rules of order 2 relative to a broad class of Lebesgue densities on the real line, using a different approach. In a data example, we use local and nonlocal proper scoring rules to assess statistically postprocessed ensemble weather forecasts.Comment: Published in at http://dx.doi.org/10.1214/12-AOS973 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A Smooth Transition from Powerlessness to Absolute Power

    Get PDF
    We study the phase transition of the coalitional manipulation problem for generalized scoring rules. Previously it has been shown that, under some conditions on the distribution of votes, if the number of manipulators is o(n)o(\sqrt{n}), where nn is the number of voters, then the probability that a random profile is manipulable by the coalition goes to zero as the number of voters goes to infinity, whereas if the number of manipulators is ω(n)\omega(\sqrt{n}), then the probability that a random profile is manipulable goes to one. Here we consider the critical window, where a coalition has size cnc\sqrt{n}, and we show that as cc goes from zero to infinity, the limiting probability that a random profile is manipulable goes from zero to one in a smooth fashion, i.e., there is a smooth phase transition between the two regimes. This result analytically validates recent empirical results, and suggests that deciding the coalitional manipulation problem may be of limited computational hardness in practice.Comment: 22 pages; v2 contains minor changes and corrections; v3 contains minor changes after comments of reviewer
    • …
    corecore