5,427 research outputs found

    A Categorical View on Algebraic Lattices in Formal Concept Analysis

    Full text link
    Formal concept analysis has grown from a new branch of the mathematical field of lattice theory to a widely recognized tool in Computer Science and elsewhere. In order to fully benefit from this theory, we believe that it can be enriched with notions such as approximation by computation or representability. The latter are commonly studied in denotational semantics and domain theory and captured most prominently by the notion of algebraicity, e.g. of lattices. In this paper, we explore the notion of algebraicity in formal concept analysis from a category-theoretical perspective. To this end, we build on the the notion of approximable concept with a suitable category and show that the latter is equivalent to the category of algebraic lattices. At the same time, the paper provides a relatively comprehensive account of the representation theory of algebraic lattices in the framework of Stone duality, relating well-known structures such as Scott information systems with further formalisms from logic, topology, domains and lattice theory.Comment: 36 page

    Uniqueness of directed complete posets based on Scott closed set lattices

    Full text link
    In analogy to a result due to Drake and Thron about topological spaces, this paper studies the dcpos (directed complete posets) which are fully determined, among all dcpos, by their lattices of all Scott-closed subsets (such dcpos will be called CσC_{\sigma}-unique). We introduce the notions of down-linear element and quasicontinuous element in dcpos, and use them to prove that dcpos of certain classes, including all quasicontinuous dcpos as well as Johnstone's and Kou's examples, are CσC_{\sigma}-unique. As a consequence, CσC_{\sigma}-unique dcpos with their Scott topologies need not be bounded sober.Comment: 12 pages. arXiv admin note: substantial text overlap with arXiv:1607.0357

    Some applications of the ultrapower theorem to the theory of compacta

    Full text link
    The ultrapower theorem of Keisler-Shelah allows such model-theoretic notions as elementary equivalence, elementary embedding and existential embedding to be couched in the language of categories (limits, morphism diagrams). This in turn allows analogs of these (and related) notions to be transported into unusual settings, chiefly those of Banach spaces and of compacta. Our interest here is the enrichment of the theory of compacta, especially the theory of continua, brought about by the immigration of model-theoretic ideas and techniques

    Noncommutative Lattices and Their Continuum Limits

    Get PDF
    We consider finite approximations of a topological space MM by noncommutative lattices of points. These lattices are structure spaces of noncommutative CC^*-algebras which in turn approximate the algebra \cc(M) of continuous functions on MM. We show how to recover the space MM and the algebra \cc(M) from a projective system of noncommutative lattices and an inductive system of noncommutative CC^*-algebras, respectively.Comment: 22 pages, 8 Figures included in the LaTeX Source New version, minor modifications (typos corrected) and a correction in the list of author
    corecore