22,727 research outputs found

    Adaptive Channel Recommendation For Opportunistic Spectrum Access

    Full text link
    We propose a dynamic spectrum access scheme where secondary users recommend "good" channels to each other and access accordingly. We formulate the problem as an average reward based Markov decision process. We show the existence of the optimal stationary spectrum access policy, and explore its structure properties in two asymptotic cases. Since the action space of the Markov decision process is continuous, it is difficult to find the optimal policy by simply discretizing the action space and use the policy iteration, value iteration, or Q-learning methods. Instead, we propose a new algorithm based on the Model Reference Adaptive Search method, and prove its convergence to the optimal policy. Numerical results show that the proposed algorithms achieve up to 18% and 100% performance improvement than the static channel recommendation scheme in homogeneous and heterogeneous channel environments, respectively, and is more robust to channel dynamics

    A hybrid ant algorithm for scheduling independent jobs in heterogeneous computing environments

    Get PDF
    The efficient scheduling of independent computational jobs in a heterogeneous computing (HC) environment is an important problem in domains such as grid computing. Finding optimal schedules for such an environment is (in general) an NP-hard problem, and so heuristic approaches must be used. In this paper we describe an ant colony optimisation (ACO) algorithm that, when combined with local and tabu search, can find shorter schedules on benchmark problems than other techniques found in the literature

    Analysis of Dynamic Memory Bandwidth Regulation in Multi-core Real-Time Systems

    Full text link
    One of the primary sources of unpredictability in modern multi-core embedded systems is contention over shared memory resources, such as caches, interconnects, and DRAM. Despite significant achievements in the design and analysis of multi-core systems, there is a need for a theoretical framework that can be used to reason on the worst-case behavior of real-time workload when both processors and memory resources are subject to scheduling decisions. In this paper, we focus our attention on dynamic allocation of main memory bandwidth. In particular, we study how to determine the worst-case response time of tasks spanning through a sequence of time intervals, each with a different bandwidth-to-core assignment. We show that the response time computation can be reduced to a maximization problem over assignment of memory requests to different time intervals, and we provide an efficient way to solve such problem. As a case study, we then demonstrate how our proposed analysis can be used to improve the schedulability of Integrated Modular Avionics systems in the presence of memory-intensive workload.Comment: Accepted for publication in the IEEE Real-Time Systems Symposium (RTSS) 2018 conferenc

    Providing End-to-End Delay Guarantees for Multi-hop Wireless Sensor Networks over Unreliable Channels

    Full text link
    Wireless sensor networks have been increasingly used for real-time surveillance over large areas. In such applications, it is important to support end-to-end delay constraints for packet deliveries even when the corresponding flows require multi-hop transmissions. In addition to delay constraints, each flow of real-time surveillance may require some guarantees on throughput of packets that meet the delay constraints. Further, as wireless sensor networks are usually deployed in challenging environments, it is important to specifically consider the effects of unreliable wireless transmissions. In this paper, we study the problem of providing end-to-end delay guarantees for multi-hop wireless networks. We propose a model that jointly considers the end-to-end delay constraints and throughput requirements of flows, the need for multi-hop transmissions, and the unreliable nature of wireless transmissions. We develop a framework for designing feasibility-optimal policies. We then demonstrate the utility of this framework by considering two types of systems: one where sensors are equipped with full-duplex radios, and the other where sensors are equipped with half-duplex radios. When sensors are equipped with full-duplex radios, we propose an online distributed scheduling policy and proves the policy is feasibility-optimal. We also provide a heuristic for systems where sensors are equipped with half-duplex radios. We show that this heuristic is still feasibility-optimal for some topologies

    Engineering a Conformant Probabilistic Planner

    Full text link
    We present a partial-order, conformant, probabilistic planner, Probapop which competed in the blind track of the Probabilistic Planning Competition in IPC-4. We explain how we adapt distance based heuristics for use with probabilistic domains. Probapop also incorporates heuristics based on probability of success. We explain the successes and difficulties encountered during the design and implementation of Probapop

    A Cross-layer Perspective on Energy Harvesting Aided Green Communications over Fading Channels

    Full text link
    We consider the power allocation of the physical layer and the buffer delay of the upper application layer in energy harvesting green networks. The total power required for reliable transmission includes the transmission power and the circuit power. The harvested power (which is stored in a battery) and the grid power constitute the power resource. The uncertainty of data generated from the upper layer, the intermittence of the harvested energy, and the variation of the fading channel are taken into account and described as independent Markov processes. In each transmission, the transmitter decides the transmission rate as well as the allocated power from the battery, and the rest of the required power will be supplied by the power grid. The objective is to find an allocation sequence of transmission rate and battery power to minimize the long-term average buffer delay under the average grid power constraint. A stochastic optimization problem is formulated accordingly to find such transmission rate and battery power sequence. Furthermore, the optimization problem is reformulated as a constrained MDP problem whose policy is a two-dimensional vector with the transmission rate and the power allocation of the battery as its elements. We prove that the optimal policy of the constrained MDP can be obtained by solving the unconstrained MDP. Then we focus on the analysis of the unconstrained average-cost MDP. The structural properties of the average optimal policy are derived. Moreover, we discuss the relations between elements of the two-dimensional policy. Next, based on the theoretical analysis, the algorithm to find the constrained optimal policy is presented for the finite state space scenario. In addition, heuristic policies with low-complexity are given for the general state space. Finally, simulations are performed under these policies to demonstrate the effectiveness
    • …
    corecore