7 research outputs found

    One-Shot Labeling for Automatic Relevance Estimation

    Full text link
    Dealing with unjudged documents ("holes") in relevance assessments is a perennial problem when evaluating search systems with offline experiments. Holes can reduce the apparent effectiveness of retrieval systems during evaluation and introduce biases in models trained with incomplete data. In this work, we explore whether large language models can help us fill such holes to improve offline evaluations. We examine an extreme, albeit common, evaluation setting wherein only a single known relevant document per query is available for evaluation. We then explore various approaches for predicting the relevance of unjudged documents with respect to a query and the known relevant document, including nearest neighbor, supervised, and prompting techniques. We find that although the predictions of these One-Shot Labelers (1SL) frequently disagree with human assessments, the labels they produce yield a far more reliable ranking of systems than the single labels do alone. Specifically, the strongest approaches can consistently reach system ranking correlations of over 0.86 with the full rankings over a variety of measures. Meanwhile, the approach substantially increases the reliability of t-tests due to filling holes in relevance assessments, giving researchers more confidence in results they find to be significant. Alongside this work, we release an easy-to-use software package to enable the use of 1SL for evaluation of other ad-hoc collections or systems.Comment: SIGIR 202

    Reducing Reliance on Relevance Judgments for System Comparison by Using Expectation-Maximization

    Full text link

    A case for automatic system evaluation

    Get PDF
    Ranking a set retrieval systems according to their retrieval effectiveness without relying on relevance judgments was first explored by Soboroff et al. [13]. Over the years, a number of alternative approaches have been proposed, all of which have been evaluated on early TREC test collections. In this work, we perform a wider analysis of system ranking estimation methods on sixteen TREC data sets which cover more tasks and corpora than previously. Our analysis reveals that the performance of system ranking estimation approaches varies across topics. This observation motivates the hypothesis that the performance of such methods can be improved by selecting the “right” subset of topics from a topic set. We show that using topic subsets improves the performance of automatic system ranking methods by 26% on average, with a maximum of 60%. We also observe that the commonly experienced problem of underestimating the performance of the best systems is data set dependent and not inherent to system ranking estimation. These findings support the case for automatic system evaluation and motivate further rese

    A case for automatic system evaluation

    No full text
    Item does not contain fulltextECIR 201
    corecore