4 research outputs found

    A Case Tracking System with Electronic Medical Record Integration to Automate Outcome Tracking for Radiologists

    Get PDF
    Radiologists make many diagnoses, but only sporadically get feedback on the subsequent clinical courses of their patients. We have created a web-based application that empowers radiologists to create and maintain personal databases of cases of interest. This tool integrates with existing information systems to minimize manual input such that radiologists can quickly flag cases for further follow-up without interrupting their clinical work. We have integrated this case-tracking system with an electronic medical record aggregation and search tool. As a result, radiologists can learn the outcomes of their patients with much less effort. We intend this tool to aid radiologists in their own personal quality improvement and to increase the efficiency of both teaching and research. We also hope to develop the system into a platform for systematic, continuous, quantitative monitoring of performance in radiology

    Care episode retrieval: distributional semantic models for information retrieval in the clinical domain

    Get PDF
    Patients' health related information is stored in electronic health records (EHRs) by health service providers. These records include sequential documentation of care episodes in the form of clinical notes. EHRs are used throughout the health care sector by professionals, administrators and patients, primarily for clinical purposes, but also for secondary purposes such as decision support and research. The vast amounts of information in EHR systems complicate information management and increase the risk of information overload. Therefore, clinicians and researchers need new tools to manage the information stored in the EHRs. A common use case is, given a - possibly unfinished - care episode, to retrieve the most similar care episodes among the records. This paper presents several methods for information retrieval, focusing on care episode retrieval, based on textual similarity, where similarity is measured through domain-specific modelling of the distributional semantics of words. Models include variants of random indexing and the semantic neural network model word2vec. Two novel methods are introduced that utilize the ICD-10 codes attached to care episodes to better induce domain-specificity in the semantic model. We report on experimental evaluation of care episode retrieval that circumvents the lack of human judgements regarding episode relevance. Results suggest that several of the methods proposed outperform a state-of-the art search engine (Lucene) on the retrieval task

    An Autoethnographic Account of Innovation at the US Department of Veterans Affairs

    Get PDF
    The history of the U.S. Department of Veterans Affairs (VA) health information technology (HIT) has been characterized by both enormous successes and catastrophic failures. While the VA was once hailed as the way to the future of twenty-first-century health care, many programs have been mismanaged, delayed, or flawed, resulting in the waste of hundreds of millions of taxpayer dollars. Since 2015 the U.S. Government Accountability Office (GAO) has designated HIT at the VA as being susceptible to waste, fraud, and mismanagement. The timely central research question I ask in this study is, can healthcare IT at the VA be healed? To address this question, I investigate a HIT case study at the VA Center of Innovation (VACI), originally designed to be the flagship initiative of the open government transformation at the VA. The Open Source Electronic Health Record Alliance (OSEHRA) was designed to promote the open innovation ecosystem public-private-academic partnership. Based on my fifteen years of experience at the VA, I use an autoethnographic methodology to make a significant value-added contribution to understanding and modeling the VA’s approach to innovation. I use several theoretical information system framework models including People, Process, and Technology (PPT), Technology, Organization and Environment (TOE), and Technology Adaptive Model (TAM) and propose a new adaptive theory to understand the inability of VA HIT to innovate. From the perspective of people and culture, I study retaliation against whistleblowers, organization behavioral integrity, and lack of transparency in communications. I examine the VA processes, including the different software development methodologies used, the development and operations process (DevOps) of an open-source application developed at VACI, the Radiology Protocol Tool Recorder (RAPTOR), a Veterans Health Information Systems and Technology Architecture (VistA) radiology workflow module. I find that the VA has chosen to migrate away from inhouse application software and buy commercial software. The impact of these People, Process, and Technology findings are representative of larger systemic failings and are appropriate examples to illustrate systemic issues associated with IT innovation at the VA. This autoethnographic account builds on first-hand project experience and literature-based insights
    corecore