450 research outputs found

    Cascaded Multi-View Canonical Correlation (CaMCCo) for Early Diagnosis of Alzheimer\u27s Disease via Fusion of Clinical, Imaging and Omic Features

    Get PDF
    The introduction of mild cognitive impairment (MCI) as a diagnostic category adds to the challenges of diagnosing Alzheimer\u27s Disease (AD). No single marker has been proven to accurately categorize patients into their respective diagnostic groups. Thus, previous studies have attempted to develop fused predictors of AD and MCI. These studies have two main limitations. Most do not simultaneously consider all diagnostic categories and provide suboptimal fused representations using the same set of modalities for prediction of all classes. In this work, we present a combined framework, cascaded multiview canonical correlation (CaMCCo), for fusion and cascaded classification that incorporates all diagnostic categories and optimizes classification by selectively combining a subset of modalities at each level of the cascade. CaMCCo is evaluated on a data cohort comprising 149 patients for whom neurophysiological, neuroimaging, proteomic and genomic data were available. Results suggest that fusion of select modalities for each classification task outperforms (mean AUC = 0.92) fusion of all modalities (mean AUC = 0.54) and individual modalities (mean AUC = 0.90, 0.53, 0.71, 0.73, 0.62, 0.68). In addition, CaMCCo outperforms all other multi-class classification methods for MCI prediction (PPV: 0.80 vs. 0.67, 0.63)

    Automatic Detection of Alzheimer's Disease with Multi-Modal Fusion of Clinical MRI Scans

    Full text link
    The aging population of the U.S. drives the prevalence of Alzheimer's disease. Brookmeyer et al. forecasts approximately 15 million Americans will have either clinical AD or mild cognitive impairment by 2060. In response to this urgent call, methods for early detection of Alzheimer's disease have been developed for prevention and pre-treatment. Notably, literature on the application of deep learning in the automatic detection of the disease has been proliferating. This study builds upon previous literature and maintains a focus on leveraging multi-modal information to enhance automatic detection. We aim to predict the stage of the disease - Cognitively Normal (CN), Mildly Cognitive Impairment (MCI), and Alzheimer's Disease (AD), based on two different types of brain MRI scans. We design an AlexNet-based deep learning model that learns the synergy of complementary information from both T1 and FLAIR MRI scans

    Alzheimers Disease Diagnosis using Machine Learning: A Review

    Full text link
    Alzheimers Disease AD is an acute neuro disease that degenerates the brain cells and thus leads to memory loss progressively. It is a fatal brain disease that mostly affects the elderly. It steers the decline of cognitive and biological functions of the brain and shrinks the brain successively, which in turn is known as Atrophy. For an accurate diagnosis of Alzheimers disease, cutting edge methods like machine learning are essential. Recently, machine learning has gained a lot of attention and popularity in the medical industry. As the illness progresses, those with Alzheimers have a far more difficult time doing even the most basic tasks, and in the worst case, their brain completely stops functioning. A persons likelihood of having early-stage Alzheimers disease may be determined using the ML method. In this analysis, papers on Alzheimers disease diagnosis based on deep learning techniques and reinforcement learning between 2008 and 2023 found in google scholar were studied. Sixty relevant papers obtained after the search was considered for this study. These papers were analysed based on the biomarkers of AD and the machine-learning techniques used. The analysis shows that deep learning methods have an immense ability to extract features and classify AD with good accuracy. The DRL methods have not been used much in the field of image processing. The comparison results of deep learning and reinforcement learning illustrate that the scope of Deep Reinforcement Learning DRL in dementia detection needs to be explored.Comment: 10 pages and 3 figure

    Machine Learning for Multiclass Classification and Prediction of Alzheimer\u27s Disease

    Get PDF
    Alzheimer\u27s disease (AD) is an irreversible neurodegenerative disorder and a common form of dementia. This research aims to develop machine learning algorithms that diagnose and predict the progression of AD from multimodal heterogonous biomarkers with a focus placed on the early diagnosis. To meet this goal, several machine learning-based methods with their unique characteristics for feature extraction and automated classification, prediction, and visualization have been developed to discern subtle progression trends and predict the trajectory of disease progression. The methodology envisioned aims to enhance both the multiclass classification accuracy and prediction outcomes by effectively modeling the interplay between the multimodal biomarkers, handle the missing data challenge, and adequately extract all the relevant features that will be fed into the machine learning framework, all in order to understand the subtle changes that happen in the different stages of the disease. This research will also investigate the notion of multitasking to discover how the two processes of multiclass classification and prediction relate to one another in terms of the features they share and whether they could learn from one another for optimizing multiclass classification and prediction accuracy. This research work also delves into predicting cognitive scores of specific tests over time, using multimodal longitudinal data. The intent is to augment our prospects for analyzing the interplay between the different multimodal features used in the input space to the predicted cognitive scores. Moreover, the power of modality fusion, kernelization, and tensorization have also been investigated to efficiently extract important features hidden in the lower-dimensional feature space without being distracted by those deemed as irrelevant. With the adage that a picture is worth a thousand words, this dissertation introduces a unique color-coded visualization system with a fully integrated machine learning model for the enhanced diagnosis and prognosis of Alzheimer\u27s disease. The incentive here is to show that through visualization, the challenges imposed by both the variability and interrelatedness of the multimodal features could be overcome. Ultimately, this form of visualization via machine learning informs on the challenges faced with multiclass classification and adds insight into the decision-making process for a diagnosis and prognosis

    Diagnosing Alzheimer's Disease using Early-Late Multimodal Data Fusion with Jacobian Maps

    Full text link
    Alzheimer's disease (AD) is a prevalent and debilitating neurodegenerative disorder impacting a large aging population. Detecting AD in all its presymptomatic and symptomatic stages is crucial for early intervention and treatment. An active research direction is to explore machine learning methods that harness multimodal data fusion to outperform human inspection of medical scans. However, existing multimodal fusion models have limitations, including redundant computation, complex architecture, and simplistic handling of missing data. Moreover, the preprocessing pipelines of medical scans remain inadequately detailed and are seldom optimized for individual subjects. In this paper, we propose an efficient early-late fusion (ELF) approach, which leverages a convolutional neural network for automated feature extraction and random forests for their competitive performance on small datasets. Additionally, we introduce a robust preprocessing pipeline that adapts to the unique characteristics of individual subjects and makes use of whole brain images rather than slices or patches. Moreover, to tackle the challenge of detecting subtle changes in brain volume, we transform images into the Jacobian domain (JD) to enhance both accuracy and robustness in our classification. Using MRI and CT images from the OASIS-3 dataset, our experiments demonstrate the effectiveness of the ELF approach in classifying AD into four stages with an accuracy of 97.19%.Comment: To be published in Proceedings of 2023 IEEE Healthcom, December 202

    3D Convolution Neural Networks for Medical Imaging; Classification and Segmentation : A Doctor’s Third Eye

    Get PDF
    Master's thesis in Information- and communication technology (IKT591)In this thesis, we studied and developed 3D classification and segmentation models for medical imaging. The classification is done for Alzheimer’s Disease and segmentation is for brain tumor sub-regions. For the medical imaging classification task we worked towards developing a novel deep architecture which can accomplish the complex task of classifying Alzheimer’s Disease volumetrically from the MRI scans without the need of any transfer learning. The experiments were performed for both binary classification of Alzheimer’s Disease (AD) from Normal Cognitive (NC), as well as multi class classification between the three stages of Alzheimer’s called NC, AD and Mild cognitive impairment (MCI). We tested our model on the ADNI dataset and achieved mean accuracy of 94.17% and 89.14% for binary classification and multiclass classification respectively. In the second part of this thesis which is segmentation of tumors sub-regions in brain MRI images we studied some popular architecture for segmentation of medical imaging and inspired from them, proposed our architecture of end-to-end trainable fully convolutional neural net-work which uses attention block to learn the localization of different features of the multiple sub-regions of tumor. Also experiments were done to see the effect of weighted cross-entropy loss function and dice loss function on the performance of the model and the quality of the output segmented labels. The results of evaluation of our model are received through BraTS’19 dataset challenge. The model is able to achieve a dice score of 0.80 for the segmentation of whole tumor, and a dice scores of 0.639 and 0.536 for other two sub-regions within the tumor on validation data. In this thesis we successfully applied computer vision techniques for medical imaging analysis. We show the huge potential and numerous benefits of deep learning to combat and detect diseases opens up more avenues for research and application for automating medical imaging analysis
    • …
    corecore