5,132 research outputs found

    Hard isogeny problems over RSA moduli and groups with infeasible inversion

    Get PDF
    We initiate the study of computational problems on elliptic curve isogeny graphs defined over RSA moduli. We conjecture that several variants of the neighbor-search problem over these graphs are hard, and provide a comprehensive list of cryptanalytic attempts on these problems. Moreover, based on the hardness of these problems, we provide a construction of groups with infeasible inversion, where the underlying groups are the ideal class groups of imaginary quadratic orders. Recall that in a group with infeasible inversion, computing the inverse of a group element is required to be hard, while performing the group operation is easy. Motivated by the potential cryptographic application of building a directed transitive signature scheme, the search for a group with infeasible inversion was initiated in the theses of Hohenberger and Molnar (2003). Later it was also shown to provide a broadcast encryption scheme by Irrer et al. (2004). However, to date the only case of a group with infeasible inversion is implied by the much stronger primitive of self-bilinear map constructed by Yamakawa et al. (2014) based on the hardness of factoring and indistinguishability obfuscation (iO). Our construction gives a candidate without using iO.Comment: Significant revision of the article previously titled "A Candidate Group with Infeasible Inversion" (arXiv:1810.00022v1). Cleared up the constructions by giving toy examples, added "The Parallelogram Attack" (Sec 5.3.2). 54 pages, 8 figure

    Group theory in cryptography

    Full text link
    This paper is a guide for the pure mathematician who would like to know more about cryptography based on group theory. The paper gives a brief overview of the subject, and provides pointers to good textbooks, key research papers and recent survey papers in the area.Comment: 25 pages References updated, and a few extra references added. Minor typographical changes. To appear in Proceedings of Groups St Andrews 2009 in Bath, U

    Visual-inertial self-calibration on informative motion segments

    Full text link
    Environmental conditions and external effects, such as shocks, have a significant impact on the calibration parameters of visual-inertial sensor systems. Thus long-term operation of these systems cannot fully rely on factory calibration. Since the observability of certain parameters is highly dependent on the motion of the device, using short data segments at device initialization may yield poor results. When such systems are additionally subject to energy constraints, it is also infeasible to use full-batch approaches on a big dataset and careful selection of the data is of high importance. In this paper, we present a novel approach for resource efficient self-calibration of visual-inertial sensor systems. This is achieved by casting the calibration as a segment-based optimization problem that can be run on a small subset of informative segments. Consequently, the computational burden is limited as only a predefined number of segments is used. We also propose an efficient information-theoretic selection to identify such informative motion segments. In evaluations on a challenging dataset, we show our approach to significantly outperform state-of-the-art in terms of computational burden while maintaining a comparable accuracy

    A decision support system for vehicle routing based on model inversion and data analysis

    Get PDF
    International audienceIn this paper, we present a three-phase solving mechanism for the vehicle routing problem. The solving mechanism is part of a decision support system architecture deduced from an interdisciplinary study. We highlight that human factors and dynamic aspects are generally ignored in the classical approaches to solve the problem. In our approach, a link is done between methods of operations research and an ecological interface design coming from cognitive ergonomics. We focus our study in how to manage the constraint relaxation if the problem is not satisfiable. We propose and evaluate model inversion techniques and data classification based methods in order to determine the most suitable constraints to relax in priority

    Asymmetric Pruning for Learning Cascade Detectors

    Full text link
    Cascade classifiers are one of the most important contributions to real-time object detection. Nonetheless, there are many challenging problems arising in training cascade detectors. One common issue is that the node classifier is trained with a symmetric classifier. Having a low misclassification error rate does not guarantee an optimal node learning goal in cascade classifiers, i.e., an extremely high detection rate with a moderate false positive rate. In this work, we present a new approach to train an effective node classifier in a cascade detector. The algorithm is based on two key observations: 1) Redundant weak classifiers can be safely discarded; 2) The final detector should satisfy the asymmetric learning objective of the cascade architecture. To achieve this, we separate the classifier training into two steps: finding a pool of discriminative weak classifiers/features and training the final classifier by pruning weak classifiers which contribute little to the asymmetric learning criterion (asymmetric classifier construction). Our model reduction approach helps accelerate the learning time while achieving the pre-determined learning objective. Experimental results on both face and car data sets verify the effectiveness of the proposed algorithm. On the FDDB face data sets, our approach achieves the state-of-the-art performance, which demonstrates the advantage of our approach.Comment: 14 page
    • …
    corecore