4,437 research outputs found

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    Medical data processing and analysis for remote health and activities monitoring

    Get PDF
    Recent developments in sensor technology, wearable computing, Internet of Things (IoT), and wireless communication have given rise to research in ubiquitous healthcare and remote monitoring of human\u2019s health and activities. Health monitoring systems involve processing and analysis of data retrieved from smartphones, smart watches, smart bracelets, as well as various sensors and wearable devices. Such systems enable continuous monitoring of patients psychological and health conditions by sensing and transmitting measurements such as heart rate, electrocardiogram, body temperature, respiratory rate, chest sounds, or blood pressure. Pervasive healthcare, as a relevant application domain in this context, aims at revolutionizing the delivery of medical services through a medical assistive environment and facilitates the independent living of patients. In this chapter, we discuss (1) data collection, fusion, ownership and privacy issues; (2) models, technologies and solutions for medical data processing and analysis; (3) big medical data analytics for remote health monitoring; (4) research challenges and opportunities in medical data analytics; (5) examples of case studies and practical solutions

    Towards Software-Defined Data Protection: GDPR Compliance at the Storage Layer is Within Reach

    Full text link
    Enforcing data protection and privacy rules within large data processing applications is becoming increasingly important, especially in the light of GDPR and similar regulatory frameworks. Most modern data processing happens on top of a distributed storage layer, and securing this layer against accidental or malicious misuse is crucial to ensuring global privacy guarantees. However, the performance overhead and the additional complexity for this is often assumed to be significant -- in this work we describe a path forward that tackles both challenges. We propose "Software-Defined Data Protection" (SDP), an adoption of the "Software-Defined Storage" approach to non-performance aspects: a trusted controller translates company and application-specific policies to a set of rules deployed on the storage nodes. These, in turn, apply the rules at line-rate but do not take any decisions on their own. Such an approach decouples often changing policies from request-level enforcement and allows storage nodes to implement the latter more efficiently. Even though in-storage processing brings challenges, mainly because it can jeopardize line-rate processing, we argue that today's Smart Storage solutions can already implement the required functionality, thanks to the separation of concerns introduced by SDP. We highlight the challenges that remain, especially that of trusting the storage nodes. These need to be tackled before we can reach widespread adoption in cloud environments

    Software-Defined Data Protection: Low Overhead Policy Compliance at the Storage Layer is Within Reach!

    Get PDF
    Most modern data processing pipelines run on top of a distributed storage layer, and securing the whole system, and the storage layer in particular, against accidental or malicious misuse is crucial to ensuring compliance to rules and regulations. Enforcing data protection and privacy rules, however, stands at odds with the requirement to achieve higher and higher access bandwidths and processing rates in large data processing pipelines. In this work we describe our proposal for the path forward that reconciles the two goals. We call our approach "Software-Defined Data Protection" (SDP). Its premise is simple, yet powerful: decoupling often changing policies from request-level enforcement allows distributed smart storage nodes to implement the latter at line-rate. Existing and future data protection frameworks can be translated to the same hardware interface which allows storage nodes to offload enforcement efficiently both for company-specific rules and regulations, such as GDPR or CCPA. While SDP is a promising approach, there are several remaining challenges to making this vision reality. As we explain in the paper, overcoming these will require collaboration across several domains, including security, databases and specialized hardware design

    clicktatorship and democrazy: Social media and political campaigning

    Get PDF
    This chapter aims to direct attention to the political dimension of the social media age. Although current events like the Cambridge Analytica data breach managed to raise awareness for the issue, the systematically organized and orchestrated mechanisms at play still remain oblivious to most. Next to dangerous monopoly-tendencies among the powerful players on the market, reliance on automated algorithms in dealing with content seems to enable large-scale manipulation that is applied for economical and political purposes alike. The successful replacement of traditional parties by movements based on personality cults around marketable young faces like Emmanuel Macron or Austria’s Sebastian Kurz is strongly linked to products and services offered by an industry that simply provides likes and followers for cash. Inspired by Trump’s monopolization of the Twitter-channel, these new political acteurs use the potential of social media for effective message control, allowing them to avoid confrontations with professional journalists. In addition, an extremely active minority of organized agitators relies on the viral potential of the web to strongly influence and dictate public discourse – suggesting a shift from the Spiral of Silence to the dangerous illusion of a Nexus of Noise
    • …
    corecore