3,364 research outputs found

    Bisimulation Relations Between Automata, Stochastic Differential Equations and Petri Nets

    Get PDF
    Two formal stochastic models are said to be bisimilar if their solutions as a stochastic process are probabilistically equivalent. Bisimilarity between two stochastic model formalisms means that the strengths of one stochastic model formalism can be used by the other stochastic model formalism. The aim of this paper is to explain bisimilarity relations between stochastic hybrid automata, stochastic differential equations on hybrid space and stochastic hybrid Petri nets. These bisimilarity relations make it possible to combine the formal verification power of automata with the analysis power of stochastic differential equations and the compositional specification power of Petri nets. The relations and their combined strengths are illustrated for an air traffic example.Comment: 15 pages, 4 figures, Workshop on Formal Methods for Aerospace (FMA), EPTCS 20m 201

    Characterizing Evaporation Ducts Within the Marine Atmospheric Boundary Layer Using Artificial Neural Networks

    Full text link
    We apply a multilayer perceptron machine learning (ML) regression approach to infer electromagnetic (EM) duct heights within the marine atmospheric boundary layer (MABL) using sparsely sampled EM propagation data obtained within a bistatic context. This paper explains the rationale behind the selection of the ML network architecture, along with other model hyperparameters, in an effort to demystify the process of arriving at a useful ML model. The resulting speed of our ML predictions of EM duct heights, using sparse data measurements within MABL, indicates the suitability of the proposed method for real-time applications.Comment: 13 pages, 7 figure

    The History of the Quantitative Methods in Finance Conference Series. 1992-2007

    Get PDF
    This report charts the history of the Quantitative Methods in Finance (QMF) conference from its beginning in 1993 to the 15th conference in 2007. It lists alphabetically the 1037 speakers who presented at all 15 conferences and the titles of their papers.

    Learning and testing stochastic discrete event

    Get PDF
    Dissertação de mestrado em Engenharia de InformáticaSistemas de eventos discretos (DES) são uma importante subclasse de sistemas (à luz da teoria dos sistemas). Estes têm sido usados, particularmente na indústria para analisar e modelar um vasto conjunto de sistemas reais, tais como, sistemas de produção, sistemas de computador, sistemas de controlo de tráfego e sistemas híbridos. O nosso trabalho explora uma extensão de DES com ênfase nos processos estocásticos, comummente chamado como sistemas de eventos discretos estocásticos (SDES). Existe assim a necessidade de estabelecer uma abstração estocástica através do uso de processos semi-Markovianos generalizados (GSMP) para SDES. Assim, o objetivo do nosso trabalho é propor uma metodologia e um conjunto de algoritmos para aprendizagem de GSMP, usar técnicas de model-checking estatístico para a verificação e propor duas novas abordagens para teste de DES e SDES (respetivamente, não estocasticamente e estocasticamente). Este trabalho também introduz uma noção de modelação, analise e verificação de sistemas contínuos e modelos de perturbação no contexto da verificação por model-checking estatístico.Discrete event systems (DES) are an important subclass of systems (in systems theory). They have been used, particularly in industry, to analyze and model a wide variety of real systems, such as production systems, computer systems, traffic systems, and hybrid systems. Our work explores an extension of DES with an emphasis on stochastic processes, commonly called stochastic discrete event systems (SDES). There was a need to establish a stochastic abstraction for SDES through generalized semi-Markov processes (GSMP). Thus, the aim of our work is to propose a methodology and a set of algorithms for GSMP learning, using model checking techniques for verification, and to propose two new approaches for testing DES and SDES (non-stochastically and stochastically). This work also introduces a notion of modeling, analysis, and verification of continuous systems and disturbance models in the context of verifiable statistical model checking

    Automatic differentiation in machine learning: a survey

    Get PDF
    Derivatives, mostly in the form of gradients and Hessians, are ubiquitous in machine learning. Automatic differentiation (AD), also called algorithmic differentiation or simply "autodiff", is a family of techniques similar to but more general than backpropagation for efficiently and accurately evaluating derivatives of numeric functions expressed as computer programs. AD is a small but established field with applications in areas including computational fluid dynamics, atmospheric sciences, and engineering design optimization. Until very recently, the fields of machine learning and AD have largely been unaware of each other and, in some cases, have independently discovered each other's results. Despite its relevance, general-purpose AD has been missing from the machine learning toolbox, a situation slowly changing with its ongoing adoption under the names "dynamic computational graphs" and "differentiable programming". We survey the intersection of AD and machine learning, cover applications where AD has direct relevance, and address the main implementation techniques. By precisely defining the main differentiation techniques and their interrelationships, we aim to bring clarity to the usage of the terms "autodiff", "automatic differentiation", and "symbolic differentiation" as these are encountered more and more in machine learning settings.Comment: 43 pages, 5 figure
    corecore