848 research outputs found

    Tail bounds for all eigenvalues of a sum of random matrices

    Get PDF
    This work introduces the minimax Laplace transform method, a modification of the cumulant-based matrix Laplace transform method developed in "User-friendly tail bounds for sums of random matrices" (arXiv:1004.4389v6) that yields both upper and lower bounds on each eigenvalue of a sum of random self-adjoint matrices. This machinery is used to derive eigenvalue analogues of the classical Chernoff, Bennett, and Bernstein bounds. Two examples demonstrate the efficacy of the minimax Laplace transform. The first concerns the effects of column sparsification on the spectrum of a matrix with orthonormal rows. Here, the behavior of the singular values can be described in terms of coherence-like quantities. The second example addresses the question of relative accuracy in the estimation of eigenvalues of the covariance matrix of a random process. Standard results on the convergence of sample covariance matrices provide bounds on the number of samples needed to obtain relative accuracy in the spectral norm, but these results only guarantee relative accuracy in the estimate of the maximum eigenvalue. The minimax Laplace transform argument establishes that if the lowest eigenvalues decay sufficiently fast, on the order of (K^2*r*log(p))/eps^2 samples, where K is the condition number of an optimal rank-r approximation to C, are sufficient to ensure that the dominant r eigenvalues of the covariance matrix of a N(0, C) random vector are estimated to within a factor of 1+-eps with high probability.Comment: 20 pages, 1 figure, see also arXiv:1004.4389v

    Robert MacPherson and arithmetic groups

    Get PDF
    We survey contributions of Robert MacPherson to the theory of arithmetic groups. There are two main areas we discuss: (i) explicit reduction theory for Siegel modular threefolds, and (ii) constructions of compactifications of locally symmetric spaces. The former is joint work with Mark McConnell, the latter with Lizhen Ji.Comment: Dedicated to Robert MacPherson on the occasion of his 60th birthda

    The complexity and geometry of numerically solving polynomial systems

    Full text link
    These pages contain a short overview on the state of the art of efficient numerical analysis methods that solve systems of multivariate polynomial equations. We focus on the work of Steve Smale who initiated this research framework, and on the collaboration between Stephen Smale and Michael Shub, which set the foundations of this approach to polynomial system--solving, culminating in the more recent advances of Carlos Beltran, Luis Miguel Pardo, Peter Buergisser and Felipe Cucker
    • …
    corecore