This work introduces the minimax Laplace transform method, a modification of
the cumulant-based matrix Laplace transform method developed in "User-friendly
tail bounds for sums of random matrices" (arXiv:1004.4389v6) that yields both
upper and lower bounds on each eigenvalue of a sum of random self-adjoint
matrices. This machinery is used to derive eigenvalue analogues of the
classical Chernoff, Bennett, and Bernstein bounds.
Two examples demonstrate the efficacy of the minimax Laplace transform. The
first concerns the effects of column sparsification on the spectrum of a matrix
with orthonormal rows. Here, the behavior of the singular values can be
described in terms of coherence-like quantities. The second example addresses
the question of relative accuracy in the estimation of eigenvalues of the
covariance matrix of a random process. Standard results on the convergence of
sample covariance matrices provide bounds on the number of samples needed to
obtain relative accuracy in the spectral norm, but these results only guarantee
relative accuracy in the estimate of the maximum eigenvalue. The minimax
Laplace transform argument establishes that if the lowest eigenvalues decay
sufficiently fast, on the order of (K^2*r*log(p))/eps^2 samples, where K is the
condition number of an optimal rank-r approximation to C, are sufficient to
ensure that the dominant r eigenvalues of the covariance matrix of a N(0, C)
random vector are estimated to within a factor of 1+-eps with high probability.Comment: 20 pages, 1 figure, see also arXiv:1004.4389v