41 research outputs found

    Foundations of quantum programming

    Full text link
    Progress in the techniques of quantum devices has made people widely believe that large-scale and functional quantum computers will be eventually built. By then, super-powered quantum computer will solve many problems affecting economic and social life that cannot be addressed by classical computing. However, our experiences with classical computing suggest that once quantum computers become available in the future, quantum software will play a key role in exploiting their power, and quantum software market will even be much larger than quantum hardware market. Unfortunately, today's software development techniques are not suited to quantum computers due to the essential differences between the nature of the classical world and that of the quantum world. To lay a solid foundation for tomorrow's quantum software industry, it is critically essential to pursue systematic research into quantum programming methodology and techniques. © 2010 Springer-Verlag

    The dagger lambda calculus

    Full text link
    We present a novel lambda calculus that casts the categorical approach to the study of quantum protocols into the rich and well established tradition of type theory. Our construction extends the linear typed lambda calculus with a linear negation of "trivialised" De Morgan duality. Reduction is realised through explicit substitution, based on a symmetric notion of binding of global scope, with rules acting on the entire typing judgement instead of on a specific subterm. Proofs of subject reduction, confluence, strong normalisation and consistency are provided, and the language is shown to be an internal language for dagger compact categories.Comment: In Proceedings QPL 2014, arXiv:1412.810

    Quantum entanglement analysis based on abstract interpretation

    Full text link
    Entanglement is a non local property of quantum states which has no classical counterpart and plays a decisive role in quantum information theory. Several protocols, like the teleportation, are based on quantum entangled states. Moreover, any quantum algorithm which does not create entanglement can be efficiently simulated on a classical computer. The exact role of the entanglement is nevertheless not well understood. Since an exact analysis of entanglement evolution induces an exponential slowdown, we consider approximative analysis based on the framework of abstract interpretation. In this paper, a concrete quantum semantics based on superoperators is associated with a simple quantum programming language. The representation of entanglement, i.e. the design of the abstract domain is a key issue. A representation of entanglement as a partition of the memory is chosen. An abstract semantics is introduced, and the soundness of the approximation is proven.Comment: 13 page

    Proof rules for the correctness of quantum programs

    Get PDF
    We apply the notion of quantum predicate proposed by D'Hondt and Panangaden to analyze a simple language fragment which may describe the quantum part of a future quantum computer in Knill's architecture. The notion of weakest liberal precondition semantics, introduced by Dijkstra for classical deterministic programs and by McIver and Morgan for probabilistic programs, is generalized to our quantum programs. To help reasoning about the correctness of quantum programs, we extend the proof rules presented by Morgan for classical probabilistic loops to quantum loops. These rules are shown to be complete in the sense that any correct assertion about the quantum loops can be proved using them. Some illustrative examples are also given to demonstrate the practicality of our proof rules. © 2007 Elsevier Ltd. All rights reserved
    corecore