
Theoretical Computer Science 386 (2007) 151–166
www.elsevier.com/locate/tcs

Proof rules for the correctness of quantum programs

Yuan Feng∗, Runyao Duan, Zhengfeng Ji, Mingsheng Ying

State Key Laboratory of Intelligent Technology and Systems, Department of Computer Science and Technology, Tsinghua University,
Beijing, 100084, China

Received 14 March 2006; received in revised form 17 November 2006; accepted 21 June 2007

Communicated by Y. Shi

Abstract

We apply the notion of quantum predicate proposed by D’Hondt and Panangaden to analyze a simple language fragment which
may describe the quantum part of a future quantum computer in Knill’s architecture. The notion of weakest liberal precondition
semantics, introduced by Dijkstra for classical deterministic programs and by McIver and Morgan for probabilistic programs, is
generalized to our quantum programs. To help reasoning about the correctness of quantum programs, we extend the proof rules
presented by Morgan for classical probabilistic loops to quantum loops. These rules are shown to be complete in the sense that any
correct assertion about the quantum loops can be proved using them. Some illustrative examples are also given to demonstrate the
practicality of our proof rules.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Quantum programming language; Quantum predicate; Quantum loops; Proof rules

1. Introduction

The theory of quantum computing has attracted considerable research efforts in the past twenty years. Benefiting
from the possibility of superposition of different states and the linearity of quantum operations, quantum computing
may provide considerable speedup over its classical analogue [22,6,7]. The existing quantum algorithms, however,
are described at a very low level: they are usually represented as quantum circuits. A few works have been done to
develop quantum programming languages which identify and promote high-level abstractions. The first step of writing
quantum pseudo-code was taken by Knill [11]; while the first actual quantum programming language is due to Ömer
[17,18]. After that, Sanders and Zuliani [19,24], Bettelli et al. [2], and Selinger [21] also proposed various quantum
languages each having different features. We refer to [20] for a survey of this field.

The standard weakest precondition calculus [5] and its probabilistic extension [16] have been successful in
reasoning about the correctness and even the rigorous derivation of classical programs. This success motivates us
to develop analogous tools for quantum programs. Sanders and Zuliani [19] have provided for their qGCL a stepwise
refinement mechanism. The approach, however, is classical in the sense that they treated the quantum programs as

∗ Corresponding author. Tel.: +86 10 62792850.
E-mail address: feng-y@tsinghua.edu.cn (Y. Feng).

0304-3975/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2007.06.011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82464923?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
mailto:feng-y@tsinghua.edu.cn
http://dx.doi.org/10.1016/j.tcs.2007.06.011

152 Y. Feng et al. / Theoretical Computer Science 386 (2007) 151–166

special cases of probabilistic programs. As a consequence, known results about the probabilistic weakest precondition
calculus can be applied directly to the quantum programs. Indeed, Butler and Hartel [3] have used it to reason about
Grover’s algorithm.

The first step towards really quantum weakest precondition calculus was made by D’Hondt and Panangaden [4].
They proposed the brilliant idea that we can treat an observable, mathematically described by a hermitian matrix,
as the quantum analogue of ‘predicate’. The elegant duality between state-transformer semantics and the weakest
precondition semantics (wp-semantics for short) of quantum programs, when described by completely positive and
trace-nonincreasing linear operators, was then proven to hold in a more direct way.

In this paper, we apply the ideas in [4] to analyze a simple quantum language fragment describing the quantum
part of a potential quantum computer in Knill’s architecture [11]. The syntax follows Selinger’s style [21] except that
we are only concerned with purely quantum data. We make this limitation on our language fragment merely for the
sake of simplification. The results presented in this paper can be extended easily to a general language where both
classical and quantum variables are involved. The denotational semantics of our language is given and shown to be a
super-operator for each program construct; the wp-semantics which is useful for reasoning about the total correctness
of quantum programs is presented following the correspondence between denotational semantics and wp-semantics
proposed in [4]. To reason about the partial correctness of programs written in our quantum language, we extend
the notion of weakest liberal precondition semantics (wlp-semantics for short), first introduced by Dijkstra [5] for
deterministic programs and then generalized by McIver and Morgan [13] for probabilistic programs, to our quantum
language. The numerical relations between these three semantics are also discussed.

In order to help reasoning about the quantum programs involving loops, we extend the notion of loop invariant
which is the key in proving correctness of classical programs (see [5] for deterministic and [15] for probabilistic loop
invariants) to quantum setting. Based on it, we develop some rules to reason about the partial and total correctness of
quantum loops. These rules are natural quantum extensions of those for classical probabilistic programs introduced by
Morgan [15]. We also show the completeness of these rules in the sense that any correct assertion about the quantum
loops can be proved using them. To demonstrate the practicality of our proof rules, some illustrative examples are
also presented. Particularly, we consider a discrete coined quantum walk on an n-cycle with an absorbing boundary
at position 1, and prove using our proof rules that this kind of walk will ultimately terminate at position 1 with unit
probability.

This paper is organized as follows. Section 2 is the preliminary part where basic concepts and notations used in
this paper are reviewed. In Section 3, we propose the syntax and denotational semantics of our quantum language
fragment. The wp-semantics is also given following the correspondence presented in [4]. Our main contribution starts
from Section 4, where we extend the notion of wlp-semantics to the quantum language we consider. The quantity
relations of these three semantics presented are also discussed. In Section 5, the wp- and wlp-semantics are used to
present some proof rules of reasoning about quantum loop programs. The completeness of these rules is proved and
some illustrative examples are also given. Section 6 is the concluding section in which we draw the conclusion and
point out some problems for further studies.

2. Preliminaries

LetH be the associated (finite-dimensional) Hilbert space of the quantum system we are concerned with, and L(H)
be the set of linear operators (or complex matrices when an orthonormal basis of H is given. We do not distinguish
between these two notions) on H. For any linear operator A ∈ L(H), we have the following definitions:

1. A is hermitian if AĎ
= A where AĎ is the adjoint operator of A such that 〈ψ |AĎ

|φ〉 = 〈φ|A|ψ〉∗ for any states
|ψ〉, |φ〉 ∈ H. Here for any complex number c, c∗ denotes the complex conjugate of c.

2. A is positive if 〈ψ |A|ψ〉 ≥ 0 for all |ψ〉 ∈ H; it is positive-definite if for any nonzero vector |ψ〉, 〈ψ |A|ψ〉 > 0.
Note that a positive operator is also hermitian.

3. The trace of A is defined as tr(A) =
∑n

i=1〈i |A|i〉 for some given orthonormal basis {|i〉, i = 1, . . . , n} ofH. Note
also that the trace function is actually independent of the orthonormal basis selected. Properties of trace function
that will be used in this paper are the linearity and that tr(AB) = tr(B A) for any operators A, B ∈ L(H).

With these notations, the set of all density operators (or alternatively, density matrices) on H can be defined as

DH := { ρ ∈ L(H) | 0 v ρ, tr(ρ) ≤ 1},

Y. Feng et al. / Theoretical Computer Science 386 (2007) 151–166 153

where 0 denotes the zero operator. The partial order v is defined on L(H) by letting M v N if N − M is positive.
The convention of allowing the trace of a density matrix to be less than 1 makes it possible to represent both the actual
state (by the normalized density matrix) and the probability with which the state is reached (by the trace of the density
matrix) in a single expression [21].

Recall further that for any linear operator E ∈ L(H)→ L(H), E is said to be

1. positive if it maps positive operators in L(H) to positive operators in L(H);
2. completely positive if it is positive and so is the trivially extended operator

I ⊗ E ∈ L(H′ ⊗H)→ L(H′ ⊗H)
for any auxiliary Hilbert space H′. Here I is the identity map in L(H′). The elegant and powerful Kraus
representation [12] of completely positive operators states that a map E is completely positive if and only if

E(ρ) =
d∑

i=1

EiρEĎ
i

for some set of matrices {Ei , i = 1, . . . , d}. The matrices Ei are called Kraus operators of E .
3. trace-nonincreasing if tr E(A) ≤ tr(A) for any linear operator A ∈ L(H); it is trace-preserving if tr E(A) = tr(A)

for all A ∈ L(H);
4. a super-operator if it is completely positive and trace-nonincreasing. In another word, a super-operator is just a

completely positive operator with its Kraus operators Ei satisfying
∑

i EĎ
i Ei v I .

Then the set of quantum programs over H can be defined as

QH := {E ∈ DH→ DH | E is a super-operator}.

The partial order on QH is defined naturally by letting E v F if F − E is completely positive. It is proved in [4] that
the two sets DH and QH are both CPOs.

In D’Hondt and Panangaden’s approach, a quantum predicate is described by a positive matrix with the maximum
eigenvalue bounded by 1. To be specific, the set of quantum predicates on Hilbert space H is defined by

PH := {M ∈ L(H) | 0 vM v I}.

This set, when equipped with the partial order defined above for L(H), is also a CPO [4]. For any ρ ∈ DH and
M ∈ PH, the degree of ρ satisfying M is denoted by the expression tr Mρ. It is exactly the expectation (or average
value according to respective probabilities) of the measurement outcomes when measuring the observable represented
by M on the state ρ.

Notice that by definition, DH ⊆ PH, which means that any density matrix is automatically a quantum predicate.
Particularly, if M = |ψ〉〈ψ | for some normalized pure state |ψ〉 ∈ H, then tr Mρ = 〈ψ |ρ|ψ〉 is just the fidelity1

between ρ and |ψ〉〈ψ |, or the probability of observing |ψ〉 when measuring ρ according to an orthonormal basis
involving |ψ〉. This observation will be used to give an explanation of wp.S.|ψ〉〈ψ | in Section 3.

The ‘healthy’ predicate transformers which exactly characterize all valid quantum programs are shown to be those
that are linear and completely positive [4]. Particularly, D’Hondt and Panangaden proved that quantum weakest
precondition exists for any completely positive map by exploiting the Kraus representation theorem. This kind of
wp-semantics indeed gives an isomorphism between the set of healthy quantum predicate transformers

T H := {T ∈ PH← PH | T is linear and completely positive}

and the set of quantum programs QH defined above, just as the cases for classical deterministic [5] and probabilistic
programs [16]. Here we write the arrow backwards in the definition of T H to emphasize that it is actually a backward
transformation from postconditions to preconditions, compared with the forward transformation in QH, which is
from initial states to final states. D’Hondt and Panangaden also used their weakest precondition approach to prove
the correctness of Grover’s search algorithm. Note that there is no loop in Grover’s algorithm since the number of
iterations is pre-specified. One of the main contributions of the present paper is to extend D’Hondt and Panangaden’s
proposal to help reasoning about the correctness of quantum loops.

1 Fidelity is a kind of ‘distance’ between quantum states defined by F(ρ, σ) = (tr
√
ρ1/2σρ1/2)2.

154 Y. Feng et al. / Theoretical Computer Science 386 (2007) 151–166

[[abort]]ρ := 0
[[skip]]ρ := ρ

[[q := 0]]ρ := |0〉q〈0|ρ|0〉q〈0| + |0〉q〈1|ρ|1〉q〈0|

[[q̄ ∗= U]]ρ := Uq̄ρU Ď
q̄

[[S1; S2]]ρ := [[S2]]([[S1]]ρ)
[[measure q then S1 else S0]]ρ := [[S1]](|1〉q〈1|ρ|1〉q〈1|)+ [[S0]](|0〉q〈0|ρ|0〉q〈0|)

[[while q do S]] := µX · (measure q then S; X else skip)

Fig. 1. Denotational semantics.

3. The syntax and the denotational/weakest precondition semantics

In this paper, we concentrate our attention on the purely quantum fragment of a general quantum programming
language in the sense that only quantum data but no classical data are considered. Following Knill’s QRAM model
[11], a quantum computer in the future possibly consists of a general-purpose classical computer which controls a
special quantum hardware device. Our quantum language considered here then aims at describing the action of the
special quantum device, rather than the behavior of the whole computer including the classical controller. Note that the
results of this paper can be easily extended to the general programming language by, for example, presenting classical
and quantum variables by tuples of density matrices, and by extending quantum predicates to tuples of quantum
predicates, just as what has been done in [21] and [4].

Suppose S, S0 and S1 denote quantum programs, q1, . . . , qn and q denote qubit-typed variables, and U denotes a
unitary transformation which applies on a 2n-dimensional Hilbert space. Then the syntax of our quantum language
fragment is defined as follows:

S ::= abort | skip | q := 0 | q1, q2, . . . , qn ∗= U | S0; S1 |

measure q then S1 else S0 | while q do S

Here we borrow the notations from [21] except for abort and the loop statements. Intuitively, abort is the
nowhere-terminating program, and q := 0 initializes qubit q by setting it to the standard state |0〉. The statement
q1, q2, . . . , qn ∗= U applies the unitary transformation U on the n distinct qubits q1, q2, . . . , qn . We put the constraint
that q1, q2, . . . , qn must be distinct to avoid syntactically some no-go operations such as quantum cloning. The
statement measure q then S1 else S0 first applies a measurement on qubit q according to the computational basis, then
executes S1 or S0 depending on whether the measurement result is 1 or 0. The loop statement while q do S measures
qubit q first, also according to the computational basis. If the result is 0, then it terminates; otherwise it executes S
and the loop repeats.

Formally, we have the following definition of denotational semantics:

Definition 3.1. For any quantum program S, the denotational semantics of S is a map [[S]] from DH to DH defined
inductively in Fig. 1.

In Definition 3.1 and in the rest of this paper, q̄ denotes the abbreviation of q1, . . . , qn , Uq̄ means applying U on
the Hilbert space spanned by qubits q̄ , and |x〉q〈y| denotes the operator which applies |x〉〈y| on qubit q, leaving other
qubits unchanged. That is,

|x〉q〈y| = IH1 ⊗ |x〉〈y| ⊗ IH2 (1)

for some appropriate Hilbert spaces H1 and H2.
Notice that if a measurement according to the computational basis {|0〉, |1〉} is applied on qubit q when the whole

system is in state ρ, the probability of observing outcome i is pi = tr|i〉q〈i |ρ|i〉q〈i |, and the post-measurement state

Y. Feng et al. / Theoretical Computer Science 386 (2007) 151–166 155

wp.abort.M := 0
wp.skip.M := M

wp.(q := 0).M := |0〉q〈0|M |0〉q〈0| + |1〉q〈0|M |0〉q〈1|

wp.(q̄ ∗= U).M := U Ď
q̄ MUq̄

wp.(S1; S2).M := wp.S1.(wp.S2.M)

wp.(measure q then S1 else S0).M :=
1∑

i=0

|i〉q〈i |wp.Si .M |i〉q〈i |

wp.(while q do S).M := µX · (|1〉q〈1|wp.S.X |1〉q〈1| + |0〉q〈0|M |0〉q〈0|)

Fig. 2. Weakest precondition semantics.

of the whole system when i is observed is ρi = |i〉q〈i |ρ|i〉q〈i |/pi , i = 0, 1. So the final output of the statement
“measure q then S1 else S0” when ρ is input is

1∑
i=0

pi [[Si]]ρi =

1∑
i=0

[[Si]]|i〉q〈i |ρ|i〉q〈i |.

That justifies the definition of this statement in Definition 3.1.
The following lemma shows that the denotational semantics of our quantum programs are all super-operators. So

they can be physically implemented in a future quantum computer.

Lemma 3.2. For any quantum program S, the denotational semantics of S is a super-operator on DH, i.e., [[S]] ∈
QH.

Proof. The only case we should prove is when S ≡ while q do S′ is a quantum loop. In this case, it is direct from
definition that

[[S]] = µX · (X ◦ [[S′]] ◦ E1 + E0)

where Ei are super-operators such that for any ρ ∈ DH, Ei (ρ) = |i〉q〈i |ρ|i〉q〈i |. Now suppose inductively that
[[S′]] ∈ QH. Then the map

X → X ◦ [[S′]] ◦ E1 + E0

is Scott-continuous on QH. From the fact that QH is a CPO [21], we derive the desired result that [[S]] ∈ QH. �

Recall that from [4], any super-operator E can be given a corresponding wp-semantics as follows: suppose

E(ρ) =
∑

k

EkρEĎ
k , ∀ρ ∈ DH (2)

with
∑

k EĎ
k Ek v I being the Kraus representation of E . Then wp.E is also a completely positive operator with the

Kraus representation

wp.E .M =
∑

k

EĎ
k M Ek, ∀M ∈ PH. (3)

Following this idea, we define the wp-semantics for our quantum language as follows:

Definition 3.3. For any quantum program S, the wp-semantics of S is defined by a map wp.S from PH to PH
defined inductively in Fig. 2.

156 Y. Feng et al. / Theoretical Computer Science 386 (2007) 151–166

Lemma 3.4. The wp-semantics defined in Fig. 2 indeed gives the desired correspondence. That is, for any quantum
program S, if {Ek, k = 1, . . . , d} are the Kraus operators of [[S]], then wp.S is also completely positive, and has
{EĎ

k , k = 1, . . . , d} as its Kraus operators.

Proof. It is easy to check. So we omit the details here. �

The following theorem shows a quantitative relation between denotational semantics andwp-semantics. Intuitively,
the average outcome when observing a quantum predicate on the output of a quantum program is equal to the average
outcome when observing the weakest precondition of this predicate with respect to the program on the input state.

Theorem 3.5. For any quantum program S, quantum predicate M ∈ PH, and ρ ∈ DH, we have

tr(wp.S.M)ρ = tr M[[S]]ρ. (4)

Proof. Direct from Lemma 3.4 and Proposition 3.3 of [4]. �

Corollary 3.6. The map wp.S is linear on PH for any quantum program S. That is, for any λ,µ ∈ R and
M, N ∈ PH,

wp.S.(λM + µN) = λ(wp.S.M)+ µ(wp.S.N)

provided that λM + µN ∈ PH.

Taking M = I in Eq. (4), we have

tr(wp.S.I)ρ = tr[[S]]ρ.

Notice that the righthand side of the above equation is exactly the probability that the program S terminates on the
input state ρ. So intuitively, the quantum predicate wp.S.I denotes the condition that the program S terminates, in
analogy with the predicate wp.S.true in classical deterministic setting and wp.S.1 in probabilistic setting.

Another special case which is also worth noting is when M = |ψ〉〈ψ | for some normalized pure state |ψ〉. In this
case, Eq. (4) becomes

tr(wp.S.|ψ〉〈ψ |)ρ = tr|ψ〉〈ψ |[[S]]ρ = 〈ψ |[[S]]ρ|ψ〉.

The quantity 〈ψ |[[S]]ρ|ψ〉 denotes either the fidelity between [[S]]ρ and |ψ〉〈ψ | or the probability of observing
|ψ〉 when measuring [[S]]ρ according to an orthonormal basis involving |ψ〉. So intuitively, the quantum predicate
wp.S.|ψ〉〈ψ |, when performed on the initial state, gives us information about the precision of the actual output of
program S to approximate the desired output |ψ〉, or the probability for S, when followed by a measurement according
to an orthonormal basis involving |ψ〉, to correctly output |ψ〉.

4. The weakest liberal precondition semantics

We have so far defined the wp-semantics, which is useful when we consider the total correctness of quantum
programs. That is, what we care about is not only the correctness of the final state when the program terminates, but
also the condition at which a quantum program can terminate. To deal with partial correctness of quantum programs,
we extend the notion of wlp-semantics to our quantum language as follows:

Definition 4.1. For any quantum program S, the wlp-semantics of S is defined by a map wlp.S from PH to PH
defined inductively in Fig. 3.

Analogous with Theorem 3.5, the following theorem shows a quantitative connection between wp-semantics and
denotational semantics.

Theorem 4.2. For any quantum program S, quantum predicate M ∈ PH, and ρ ∈ DH, we have

tr(wlp.S.M)ρ = tr M[[S]]ρ + tr ρ − tr[[S]]ρ. (5)

Y. Feng et al. / Theoretical Computer Science 386 (2007) 151–166 157

wlp.abort.M := I

wlp.skip.M := M

wlp.(q := 0).M := |0〉q〈0|M |0〉q〈0| + |1〉q〈0|M |0〉q〈1|

wlp.(q̄ ∗= U).M := U Ď
q̄ MUq̄

wlp.(S1; S2).M := wlp.S1.(wlp.S2.M)

wlp.(measure q then S1 else S0).M :=
1∑

i=0

|i〉q〈i |wlp.Si .M |i〉q〈i |

wlp.(while q do S).M := νX · (|1〉q〈1|wlp.S.X |1〉q〈1| + |0〉q〈0|M |0〉q〈0|)

Fig. 3. Weakest liberal precondition semantics.

Proof. We need only to consider the case when S ≡ while q do S′ is a quantum loop. Other cases are easier to check.
First, from definition we have

[[while q do S′]]ρ =
∞⊔

i=0

E i (ρ) (6)

where for any ρ ∈ DH, E0(ρ) = 0 and

E i+1(ρ) = E i ([[S′]]|1〉q〈1|ρ|1〉q〈1|)+ |0〉q〈0|ρ|0〉q〈0|;

while

wlp.(while q do S′).M =
∞l

i=0

F i (M), (7)

where for any M ∈ PH, F0(M) = I and

F i+1(M) = |1〉q〈1|wlp.S′.F i (M)|1〉q〈1| + |0〉q〈0|M |0〉q〈0|.

Suppose Eq. (5) holds for the program S′, i.e.,

∀M ∈ PH, ρ ∈ DH · tr(I − wlp.S′.M)ρ = tr(I − M)[[S′]]ρ. (8)

We now prove by induction that for any i ≥ 0

∀M ∈ PH, ρ ∈ DH · tr(I − F i (M))ρ = tr(I − M)E i (ρ). (9)

When i = 0, Eq. (9) holds because both sides equal to 0. Suppose now Eq. (9) holds for i = k. Then when
i = k + 1, we calculate that for any M ∈ PH and ρ ∈ DH,

tr(I − Fk+1(M))ρ

= tr ρ − trwlp.S′.Fk(M)|1〉q〈1|ρ|1〉q〈1| − tr M |0〉q〈0|ρ|0〉q〈0|

= tr(I − wlp.S′.Fk(M))|1〉q〈1|ρ|1〉q〈1| + tr(I − M)|0〉q〈0|ρ|0〉q〈0|

= tr(I − Fk(M))([[S′]]|1〉q〈1|ρ|1〉q〈1|)+ tr(I − M)|0〉q〈0|ρ|0〉q〈0| by Eq. (8)

= tr(I − M)Ek([[S′]]|1〉q〈1|ρ|1〉q〈1|)+ tr(I − M)|0〉q〈0|ρ|0〉q〈0| by induction hypothesis

= tr(I − M)Ek+1(ρ).

158 Y. Feng et al. / Theoretical Computer Science 386 (2007) 151–166

So we deduce that Eq. (9) holds for any i ≥ 0. Notice that the operation tr(·) is linear. We further calculate

tr(wlp.S.M)ρ = tr(uiF i (M))ρ

= ui trF i (M)ρ

= ui (trρ − tr(I − M)E i (ρ)) by Eq. (9)
= tr ρ − ti tr(I − M)E i (ρ)

= tr ρ − tr(I − M) ti E i (ρ)

= tr ρ − tr(I − M)[[S]]ρ.

That completes our proof. �

Taking M = 0 in Eq. (5), we have

tr(wlp.S.0)ρ = tr ρ − tr[[S]]ρ.

Notice that the righthand side of the above equation is exactly the probability that the program S does not terminate
when the input state is ρ. So intuitively the quantum predicate wlp.S.0 denotes the condition that the program S
diverges.

Corollary 4.3. For any quantum program S and quantum predicate M ∈ PH,

wp.S.M v wlp.S.M

and

wlp.S.M + wp.S.(I − M) = I.

Proof. Direct from Theorems 3.5 and 4.2. �

To get a clearer picture of the connection between these two precondition semantics, let us introduce a notion which
can be regarded as the analogue of conjunction ∧ of classical standard predicates and probabilistic conjunction & of
probabilistic predicates. Note that in [15], the conjunction & of probabilistic predicates α, β : Σ → [0, 1] is defined by

α & β = (α + β)	 1

where Σ is the state space, 1 is the predicate which takes value 1 everywhere, and for any state s ∈ Σ ,

(α 	 β).s = max{α.s − β.s, 0}.

Definition 4.4. Suppose M and N are two quantum predicates. We define M&N as

M&N := (M + N − I)+,

where for any hermitian matrix X , if X =
∑

i λi Pi is the spectrum decomposition of X , then X+ =
∑

i max{λi , 0}Pi .

When M and N commute, i.e. when M N = N M , suppose λ(M), λ(N), and λ(M&N) denote respectively the
vector of the eigenvalues of M, N , and M&N arranged in some pre-specified order of their (common) eigenvectors.
Then

λ(M&N) = λ(M)+ λ(N)	 1

which coincides with the case of probabilistic setting.
Note that the quantum conjunction defined in Definition 4.4 is not monotonic in general because the operation

(·)+ is not monotonic for hermitian matrices. A simple example is as follows. Let M = |0〉〈1| + |1〉〈0| and
N = M + |0〉〈0| w M . It is not difficult to check that M+ 6v N+.

Theorem 4.5. For any quantum predicates M, N ∈ PH and any quantum program S, if M + N w I then

wp.S.(M&N) = wlp.S.M & wp.S.N (10)

Y. Feng et al. / Theoretical Computer Science 386 (2007) 151–166 159

and

wlp.S.(M&N) = wlp.S.M & wlp.S.N . (11)

Proof. From the assumption that M + N w I , we have M&N = M + N − I . Then

wlp.S.M & wp.S.N

= (wlp.S.M + wp.S.N − I)+

= (wp.S.N − wp.S.(I − M))+ Corollary 4.3
= wp.S.(M + N − I) Corollary 3.6, and the assumption that M + N w I

= wp.S.(M&N).

That proves Eq. (10). For Eq. (11), we calculate that

wlp.S.(M & N)

= wlp.S.(M + N − I)

= I − wp.S.(2I − M − N) Corollary 4.3
= I − wp.S.(I − M)− wp.S.(I − N) Corollary 3.6
= wlp.S.M + wlp.S.N − I. Corollary 4.3

Then we have wlp.S.(M&N) = wlp.S.M & wlp.S.N because wlp.S.(M&N) w 0. �

It may be surprising at first glance that the operation & is not symmetric in Eq. (10). In fact, we can prove similarly
that wp.S.(M&N) = wp.S.M & wlp.S.N .

When taking N = I in Eq. (10), we have the following direct but useful corollary:

Corollary 4.6. For any quantum program S and quantum predicate M,

wp.S.M = wlp.S.M & wp.S.I. (12)

Recall that wp.S.I denotes the condition the program S terminates. So the intuitive meaning of Eq. (12) is that
a program is totally correct (represented by wp-semantics) if and only if it is partially correct (represented by wlp-
semantics) and it terminates. This captures exactly the intuition of total correctness and partial correctness.

To conclude this section, we present some properties of wlp-semantics which are useful in the next section. The
proofs are direct so we omit the details here.

Lemma 4.7. For any quantum program S and quantum predicate M, N ∈ PH, we have

1.wlp.S.I = I ;
2. (monotonicity) if M v N then wlp.S.M v wlp.S.N;
3. if M + N v I then wlp.S.(M + N) = wp.S.M + wlp.S.N;
4. if M w N then wlp.S.(M − N) = wlp.S.M − wp.S.N.

5. Proof rules for quantum loops

Proof rules for programs are important on the way to designing more general refinement techniques for
programming. In this section, we derive some proof rules for reasoning about loops in our quantum language fragment.
We find that almost all loop rules derived in classical probabilistic programming (see, for example, [14] or [15]) can
be extended to quantum case.

In classical deterministic or probabilistic programming languages, an appropriate invariant is the key for reasoning
about loops. It is also true in quantum case. So our first theorem is devote to reasoning about quantum loops
within partial correctness setting using wlp-invariants. Recall that in classical probabilistic programming, if Inv is a
wlp-invariant of a loop statement loop ≡ “while b do S” satisfying

[b] ∗ Inv V wlp.S.Inv, (13)

160 Y. Feng et al. / Theoretical Computer Science 386 (2007) 151–166

then

Inv V wlp.loop.([b] ∗ Inv).

Here b is a Boolean variable with [b] its truth-value function over the state space and b its negative. The symbol “V”
means “everywhere no more than”, which is the probabilistic analogue of the implication relation “⇒” in standard
logic; and ∗ is the pointwise multiplication defined between two probabilistic predicates.

Theorem 5.1. For any quantum predicate M ∈ PH, if

|1〉q〈1|M |1〉q〈1| v |1〉q〈1|wlp.S.M̃q |1〉q〈1| (14)

then

M̃q v wlp.qloop.(|0〉q〈0|M |0〉q〈0|).

Here and in what follows, by qloop we denote the quantum program “while q do S”; and for any quantum predicate
M, M̃q represents the abbreviation of

∑1
i=0 |i〉q〈i |M |i〉q〈i |.

Note that by definition, |i〉q〈i | denotes the projector onto the subspace Hi of H where the qubit q is in the state
|i〉〈i |. So from Theorem 5.1, if the projection of M onto the subspace H1 is below the projection of wlp.S.M̃q onto
H1, then M̃q is a liberal precondition of |0〉q〈0|M |0〉q〈0|, the projection of M onto the subspace H0, with respect to
qloop.

Proof. By definition, we have

wlp.qloop.(|0〉q〈0|M |0〉q〈0|) =
∞l

i=0

Mi ,

where M0 = I and for i ≥ 0,

Mi+1 = |1〉q〈1|wlp.S.Mi |1〉q〈1| + |0〉q〈0|M |0〉q〈0|.

In what follows, we prove by induction that for any i ≥ 0,

M̃q v Mi . (15)

When i = 0, Eq. (15) holds trivially. Suppose Eq. (15) holds for i = k. Then when i = k + 1, we have

Mk+1 = |1〉q〈1|wlp.S.Mk |1〉q〈1| + |0〉q〈0|M |0〉q〈0|
w |1〉q〈1|wlp.S.M̃q |1〉q〈1| + |0〉q〈0|M |0〉q〈0| induction hypothesis and Lemma 4.7.2
w |1〉q〈1|M |1〉q〈1| + |0〉q〈0|M |0〉q〈0| Eq. (14)
= M̃q .

With that we complete the proof of this theorem. �

In the following, we call M̃q a wlp-invariant of qloop if Eq. (14) holds; similarly, M̃q is said to be a wp-invariant
of qloop if

|1〉q〈1|M |1〉q〈1| v |1〉q〈1|wp.S.M̃q |1〉q〈1|. (16)

Note that Eq. (13) is equivalent to

[b] ∗ Inv V [b] ∗ wlp.S.Inv.

This justifies that Eq. (14) is indeed a quantum generalization of probabilistic wlp-invariant.

Lemma 5.2. For any quantum predicate M,

1. the predicate wlp.qloop.M is a wlp-invariant of qloop,
2. the predicate wp.qloop.M is a wp-invariant of qloop.

Y. Feng et al. / Theoretical Computer Science 386 (2007) 151–166 161

Proof. We only prove 1. The proof of 2 is similar. Let M ′ = wlp.qloop.M . By definition, we know

M ′ = |1〉q〈1|wlp.S.M ′|1〉q〈1| + |0〉q〈0|M |0〉q〈0|. (17)

It is then direct that

|1〉q〈1|M ′|1〉q〈1| = |1〉q〈1|wlp.S.M ′|1〉q〈1| (18)

and

|0〉q〈0|M ′|0〉q〈0| = |0〉q〈0|M |0〉q〈0|. (19)

Thus we have M ′ = M̃ ′q , and now Eq. (18) becomes

|1〉q〈1|M ′|1〉q〈1| = |1〉q〈1|wlp.S.M̃ ′q |1〉q〈1|,

which just states that M ′ = M̃ ′q is a wlp-invariant of qloop. �

Using this lemma, we can show that the proof rule presented in Theorem 5.1 is complete for reasoning about the
partial correctness of quantum loops in the sense that whenever N v wlp.qloop.N ′ holds for quantum predicates N
and N ′, we can prove it using the proof rule in Theorem 5.1 (and the monotonicity of wlp).

Theorem 5.3 (Completeness for Partial Correctness). For any quantum predicates N and N ′, if N v wlp.qloop.N ′

then there exists a quantum predicate M such that M̃q is a wlp-invariant of qloop, and

1. N v M̃q ,
2.wlp.qloop.|0〉q〈0|M |0〉q〈0| v wlp.qloop.N ′.

Proof. Let M = wlp.qloop.N ′. By Lemma 5.2.1 we know that M̃q = M , and it is a wlp-invariant of qloop. Then
1 holds automatically. Furthermore, we have |0〉q〈0|M |0〉q〈0| = |0〉q〈0|N ′|0〉q〈0| by Eq. (19). Thus 2 is satisfied by
noting that

wlp.qloop.|0〉q〈0|N ′|0〉q〈0|
= νX · |1〉q〈1|wlp.S.X |1〉q〈1| + |0〉q〈0|N ′|0〉q〈0| (20)
= wlp.qloop.N ′. �

We now turn to reasoning about quantum loops in total correctness setting. To simplify notations, we define

T := wp.qloop.I.

Intuitively, T denotes the termination condition of qloop. For any quantum loop, if a wp-invariant implies the
termination condition, then its partial correctness is sufficient to guarantee its total correctness, as the following
theorem states.

Theorem 5.4. For any quantum predicate M ∈ PH, if M̃q is a wp-invariant of qloop and M̃q v T, then

M̃q v wp.qloop.(|0〉q〈0|M |0〉q〈0|).

Proof. Let

M ′ = M̃q + I − T . (21)

Notice that from the definition

T = µX · |1〉q〈1|wp.S.X |1〉q〈1| + |0〉q〈0|,

we have

|1〉q〈1|T |1〉q〈1| = |1〉q〈1|wp.S.T |1〉q〈1|, (22)
|0〉q〈0|T |0〉q〈0| = |0〉q〈0|, (23)

162 Y. Feng et al. / Theoretical Computer Science 386 (2007) 151–166

and then T̃q = T , M̃ ′q = M ′. Furthermore, we derive 0 v M ′ v I by the the assumption that M̃q v T . So M ′ is also
a quantum predicate. We now calculate

|1〉q〈1|wlp.S.M̃ ′q |1〉q〈1|

= |1〉q〈1|wlp.S.(M̃q + I − T)|1〉q〈1|
= |1〉q〈1|(wp.S.M̃q + wlp.S.(I − T))|1〉q〈1| Lemma 4.7.3
= |1〉q〈1|(wp.S.M̃q + wlp.S.I − wp.S.T)|1〉q〈1| Lemma 4.7.4
w |1〉q〈1|M |1〉q〈1| + |1〉q〈1| − |1〉q〈1|T |1〉q〈1| Lemma 4.7.1 and Eqs. (16) and (22)
= |1〉q〈1|M ′|1〉q〈1|.

It then follows that M̃ ′q is a wlp-invariant of qloop. We further calculate

M̃q = M̃ ′q + T − I

v wlp.qloop.(|0〉q〈0|M ′|0〉q〈0|)+ T − I Theorem 5.1
= wlp.qloop.(|0〉q〈0|M ′|0〉q〈0|) & T

= wp.qloop.(|0〉q〈0|M ′|0〉q〈0|) Eq. (12)
= wp.qloop.(|0〉q〈0|M |0〉q〈0|) Eqs. (21) and (23).

That completes our proof. �

Analogue to Theorem 5.3, we can show that the proof rule presented in Theorem 5.4 is also complete for reasoning
about the total correctness of quantum loops.

Theorem 5.5 (Completeness for Total Correctness). For any quantum predicates N and N ′, if N v wp.qloop.N ′

then there exists a quantum predicate M such that M̃q is a wp-invariant of qloop, and

1. M̃q v T ,
2. N v M̃q ,
3.wp.qloop.|0〉q〈0|M |0〉q〈0| v wp.qloop.N ′.

Proof. Let M = wp.qloop.N ′. By Lemma 5.2.2, M̃q = M , and it is a wp-invariant of qloop. Then we have M̃q v T
by the monotonicity of wp.qloop. The rest of the proof is similar to that of Theorem 5.3. �

To demonstrate the power of the proof rules presented so far, let us consider an interesting example. As we know,
quantum walk is a natural quantum extension of classical random walk, which in turn has proved to be a fundamental
tool in computer science, especially in the designing of algorithms [10]. In this example, we consider a discrete coined
quantum walk on an n-cycle with an absorbing boundary at position 1, and prove the property of this kind of quantum
walk using our proof rules presented in Theorems 5.1 and 5.4. For more details about quantum walk on a cycle, or
more generally, on any graph, we refer to [1].

Example 5.6. Let Hc be a 2-dimensional ‘coin’ space with orthonomal basis states |0〉 and |1〉, and Hp be the
n-dimensional principle space spanned by the position vectors |i〉 : i = 0, . . . , n − 1. Let Hq be the state space
of an auxiliary qubit q which indicates whether or not the position of current walk is 1. Then each step of the quantum
walk we are concerned with consists of four substeps:

1. A ‘coin-tossing operator’ H = |+〉〈0| + |−〉〈1| is applied to the coin space, where |+〉 = (|0〉 + |1〉)/
√

2 and
|−〉 = (|0〉 − |1〉)/

√
2.

2. A shift operator

S =
n−1∑
i=0

|i 	 1〉〈i | ⊗ |0〉〈0| +
n−1∑
i=0

|i ⊕ 1〉〈i | ⊗ |1〉〈1|

is performed on the space Hp ⊗ Hc, which makes the quantum walk one step left or right according to the coin
state. Here 	 and ⊕ denote subtraction and addition modulo n, respectively.

Y. Feng et al. / Theoretical Computer Science 386 (2007) 151–166 163

3. A controlling operator

V = I ⊗
∑
i 6=1

|i〉〈i | + σ1 ⊗ |1〉〈1|,

where σ1 = |0〉〈1|+ |1〉〈0| is one of the pauli matrices, is applied on the space Hq ⊗ Hp to transfer the information
about whether or not the current walk is in position 1 to the indicating qubit q.

4. Measure the indicating qubit q to see if the current position of the walk is 1. If the answer is ‘yes’ then terminate
the walk, otherwise the walk continues.

Formally, we can formulate the walk described above by a quantum loop, denoted in the following by qwalk, as

while q do q ∗= U (24)

where U = (Vqp ⊗ Ic)(Iq ⊗ Spc)(Iqp ⊗ Hc), and q = q, q ′ is a sequence of quantum qubits in the Hilbert space
Hq ⊗ Hp ⊗ Hc. We write the subscripts for each operation to indicate at which subspace the operation is performed
on.

We now show in the following that starting from any state with the auxiliary qubit q being in |1〉〈1|, this loop will
terminate, and output a final state where the auxiliary qubit is in |0〉〈0| and the principle system lies in |1〉〈1|. Using
the language of wp-semantics, we need to show

|1〉q〈1| ⊗ Ipc v wp.qwalk.(|01〉qp〈01| ⊗ Ic). (25)

To this end, we need to find an appropriate wp-invariant since it is the key to apply the proof rule presented in
Theorem 5.4. Let

M = |01〉qp〈01| ⊗ Ic + |1〉q〈1| ⊗ Ipc.

We now check that the predicate M̃q = M is indeed a wp-invariant (also a wlp-invariant because the loop body is
merely a unitary transformation) of qwalk. First,

(V Ď
qp ⊗ Ic)M̃q(Vqp ⊗ Ic)

= (V Ď
qp ⊗ Ic)

(
|01〉qp〈01| ⊗ Ic + |11〉qp〈11| ⊗ Ic + |1〉q〈1| ⊗ (Ip − |1〉p〈1|)⊗ Ic

)
(Vqp ⊗ Ic)

= |11〉qp〈11| ⊗ Ic + |01〉qp〈01| ⊗ Ic + |1〉q〈1| ⊗ Ipc − |11〉qp〈11| ⊗ Ic

= |1〉q〈1| ⊗ Ipc + |01〉qp〈01| ⊗ Ic.

So we have

|1〉q〈1|wp.(q ∗= U).M̃q |1〉q〈1|

= |1〉q〈1|U ĎM̃qU |1〉q〈1|

= |1〉q〈1|(Iqp ⊗ HĎ
c)(Iq ⊗ SĎ

pc)(V
Ď
qp ⊗ Ic)M̃q(Vqp ⊗ Ic)(Iq ⊗ Spc)(Iqp ⊗ Hc)|1〉q〈1|

= |1〉q〈1|(Iq ⊗W Ď
pc)(|1〉q〈1| ⊗ Ipc + |01〉qp〈01| ⊗ Ic)(Iq ⊗Wpc)|1〉q〈1|

= |1〉q〈1|(|1〉q〈1| ⊗ Ipc + |0〉q〈0| ⊗W Ď
pc(|1〉p〈1| ⊗ Ic)Wpc)|1〉q〈1|

= |1〉q〈1| ⊗ Ipc

= |1〉q〈1|M |1〉q〈1|,

where Wpc = Spc(Ip ⊗ Hc) is a unitary operator on Hp ⊗Hc.
It was shown in [23] that the quantum loop qwalk is almost terminating in the sense that for any input state, the

probability of nontermination after m steps of iteration will tend to 0 when m tends to infinity. That is, it holds that
∀ρ ∈ DH · tr([[qwalk]]ρ) = tr ρ. Then by Theorem 3.5 we have wp.qwalk.Iqpc = Iqpc.

Now applying Theorem 5.4 we have M̃q v wp.qwalk.(|0〉q〈0|M |0〉q〈0|). Then Eq. (25) holds by noting that
|01〉qp〈01| ⊗ Ic w 0 and |0〉q〈0|M |0〉q〈0| = |01〉qp〈01| ⊗ Ic. Notice that from the above argument, we have indeed
proved an even stronger result

|01〉qp〈01| ⊗ Ic + |1〉q〈1| ⊗ Ipc v wp.qwalk.(|01〉qp〈01| ⊗ Ic) (26)

164 Y. Feng et al. / Theoretical Computer Science 386 (2007) 151–166

which states additionally that from the initial state where the auxiliary qubit is in |0〉 and the principle system is in |1〉,
this loop will also terminate at a state where these two subsystems keep untouched. This coincides with our intuition
since in this case, the loop body will not executed and so nothing will be changed.

To conclude this section, we generalize the 0-1 law in classical programming [15] to quantum case.

Lemma 5.7. For any quantum predicate M ∈ PH, if M̃q is a wp-invariant of qloop, and there exists 0 < p ≤ 1 such
that p ∗ M̃q v T , then M̃q v T . Here we abuse the symbol ∗ as the multiplication between a number and a matrix.

Proof. Let M ′ := p ∗ M . Then M̃ ′q v T and furthermore,

|1〉q〈1|M ′|1〉q〈1| = p ∗ |1〉q〈1|M |1〉q〈1|
v p ∗ |1〉q〈1|wp.S.M̃q |1〉q〈1|

= |1〉q〈1|wp.S.M̃ ′q |1〉q〈1| Corollary 3.6.

So we can derive that

p ∗ M̃q = M̃ ′q
v wp.qloop.(|0〉q〈0|M ′|0〉q〈0|) Theorem 5.4
= p ∗ wp.qloop.(|0〉q〈0|M |0〉q〈0|) Corollary 3.6
v p ∗ wp.qloop.I monotonicity of wp.qloop

= p ∗ T .

Dividing both sides by the positive number p, we arrive at the desired result. �

Theorem 5.8. If T is positive-definite, then for any quantum predicate M ∈ PH such that M̃q is a wp-invariant of
qloop, we have

M̃q v wp.qloop.(|0〉q〈0|M |0〉q〈0|).

Proof. From the assumption that T is positive-definite, for any wp-invariant M̃q of qloop there exists a sufficiently
small but positive p such that p ∗ M̃q v T . So M̃q v T from Lemma 5.7. Then the result of this theorem holds by
applying Theorem 5.4. �

Example 5.9. Suppose there is only one qubit q involved in qloop. Let T = α|1〉〈1| + |0〉〈0|. From the fact that T is
the least fixed point of the map

X → |1〉〈1|wp.S.X |1〉〈1| + |0〉〈0|, (27)

we have

α|1〉〈1| + |0〉〈0| = |1〉〈1|wp.S.(α|1〉〈1| + |0〉〈0|)|1〉〈1| + |0〉〈0|
= |1〉〈1|(α ∗ wp.S.|1〉〈1| + wp.S.|0〉〈0|)|1〉〈1| + |0〉〈0|
= (pα + q)|1〉〈1| + |0〉〈0|,

where
p = 〈1|(wp.S.|1〉〈1|)|1〉, q = 〈1|(wp.S.|0〉〈0|)|1〉,

and
p + q =

∑
k

〈1|wp.S.(|k〉〈k|)|1〉 = 〈1|wp.S.I |1〉 ≤ 〈1|I |1〉 = 1.

There are two cases we should consider.
Case 1. q = 0. Then we have α = 0 because T is the ‘least’ fixed point of Eq. (27). Thus T = |0〉〈0|.

Suppose now N v wp.qloop.N ′. By the monotonicity of wp.qloop, we have wp.qloop.N ′ v T = |0〉〈0|, and so
〈1|wp.qloop.N ′|1〉 = 0. It follows that

wp.qloop.N ′ = |1〉〈1|wp.qloop.N ′|1〉〈1| + |0〉〈0|N ′|0〉〈0| = 〈0|N ′|0〉|0〉〈0|.

Then we can derive N = λN |0〉〈0| for some λN ≤ 〈0|N ′|0〉 from the assumption N v wp.qloop.N ′.

Y. Feng et al. / Theoretical Computer Science 386 (2007) 151–166 165

Conversely, for any N = λN |0〉〈0| and N ′ such that λN ≤ 〈0|N ′|0〉, we can check easily that N v wp.qloop.N ′.
So we arrive at the conclusion that in the case of q = 0, for any quantum predicates N and N ′, N v wp.qloop.N ′ if
and only if N = λN |0〉〈0| for some 0 ≤ λN ≤ 〈0|N ′|0〉 ≤ 1.

Case 2. q > 0. Then from p + q ≤ 1 we have p < 1. So

T =
q

1− p
|1〉〈1| + |0〉〈0|,

and T is positive-definite. By a routine calculation, for any M =
∑1

i, j=0 mi j |i〉〈 j | ∈ PH2 satisfying m11 ≤

m11 p + m00q we have

|1〉〈1|M |1〉〈1| = m11|1〉〈1|
v (m11 p + m00q)|1〉〈1|
= |1〉〈1|wp.S.(m11|1〉〈1| + m00|0〉〈0|)|1〉〈1|
= |1〉〈1|wp.S.M̃q |1〉〈1|.

So M is a wp-invariant of qloop. By Theorem 5.8 we know that M̃q v wp.qloop.(|0〉q〈0|M |0〉q〈0|), i.e.

m00|0〉〈0| + m11|1〉〈1| v m00wp.qloop.|0〉〈0|.

6. Conclusion and further research

The notion of quantum predicate proposed by D’Hondt and Panangaden makes it possible to reason about quantum
programs in a direct way, compared with the previous proposals in the literature where quantum programs are treated
as special cases of probabilistic programs. In this paper, this notion is used to analyze a simple language fragment
describing the quantum part of a future quantum computer in Knill’s architecture. We also extend proof rules to
quantum programs with the aim to help reasoning about the partial and the total correctness of quantum programs.

The work presented in this paper is merely a small step, based on D’Hondt and Panangaden, toward a goal-directed
programming methodology for quantum computation. There are still many important problems which remain for
further research. First, in classical deterministic [5] or probabilistic [8,9] programming language, nondeterminism
is introduced to specify programs’ behavior before a real implementation is constructed, with which stepwise
development of programs from specifications is possible. In quantum programming language, we believe that
nondeterminism will also play an equally important role. A kind of nondeterministic choice has been extended to
qGCL by Zuliani [25] to describe and reason about counterfactual computation and mixed-state systems. The quantum
programs considered by Zuliani, however, are actually probabilistic programs with some quantum primitives such as
initialization, evolution and finalization. As a consequence, the nondeterministic choice is merely presented in the
classical way. So a topic for further study is to introduce nondeterminism to quantum programs in the framework of
D’Hondt and Panangaden.

Second, recall that deterministic programs enjoy the important property of conjunctivity [5], that is, for any standard
predicates p and q ,

wp.S.(p ∧ q)⇔ wp.S.p ∧ wp.S.q;

and probabilistic programs satisfy subconjunctivity [16,14]:

wp.S.(α & β) W wp.S.α & wp.S.β

for probabilistic predicates α and β. With these properties, correctness assertions with postconditions described by
the conjunctivity of several predicates can be checked separately for each individual predicate. As pointed out behind
Definition 4.4, however, the conjunction between quantum predicates defined in this paper is not monotonic in general,
and so similar properties do not hold for quantum programs. As a result, the separating strategy does not apply for
reasoning about quantum programs in our setting. Whether or not there exists a notion of conjunction for quantum
predicates which have a similarly nice property deserves further research.

Finally, although the proof rule for total correctness presented in Theorem 5.4 has been proved to be complete, it
is not an inductive one in the sense that M̃q v wp.qloop.I occurs in the premise, which is usually very hard to check.

166 Y. Feng et al. / Theoretical Computer Science 386 (2007) 151–166

This limits the usefulness of this rule in practice. To find an indeed inductive one, just as in classical settings, is a great
challenge.

Acknowledgements

We thank the referees for their helpful comments and suggestions, which improved the presentation and the quality
of this paper. Especially, one of the referees strengthened Theorem 5.1 in an earlier manuscript, with which a redundant
assumption in Theorems 5.4 and 5.8 can be removed. This makes these proof rules more powerful in practice. The
referee also suggested and gave a proof for the completeness theorem for partial correctness presented in Theorem 5.3.

The authors also thank the colleagues in the Quantum Computation and Quantum Information Research Group
for useful discussion. This work was partially supported by the FANEDD under Grant No. 200755, the 863 Project
under Grant No. 2006AA01Z102, and the Natural Science Foundation of China (Grant Nos. 60503001, 60621062, and
60433050). Y. Feng was also partly supported by Tsinghua Basic Research Foundation under Grant No. 052220204.

References

[1] D. Aharonov, A. Ambainis, J. Kempe, U. Vazirani, Quantum walks on graphs, in: Proceedings of the 30th Annual ACM Symposium on
Theory of Computation, ACM Press, New York, 2001, p. 50.

[2] S. Bettelli, T. Calarco, L. Serafini, Toward an architecture for quantum programming, European Physical Journal D 25 (2) (2003) 181–200.
[3] M. Butler, P. Hartel, Reasoning about grover’s quantum search algorithm using probabilistic wp, ACM Transactions on Programming

Languages and Systems 21 (3) (1999) 417–429.
[4] E. D’Hondt, P. Panangaden, Quantum weakest preconditions, in: P. Selinger (Ed.), Proceedings of the 2nd Workshop on Quantum

Programming Languages, QPL04, Turku Centre for Computer Science, 2004. See also Mathematical Structures in Computer Science, 2006.
[5] E.W. Dijkstra, A Discipline of Programming, Prentice-Hall, 1976.
[6] L.K. Grover, A fast quantum mechanical algorithm for database search, in: Proc. ACM STOC, 1996, pp. 212–219.
[7] L.K. Grover, Quantum mechanics helps in searching for a needle in a haystack, Physical Review Letters 78 (2) (1997) 325.
[8] C. Jones, Probabilistic nondeterminism, Ph.D. Thesis, Edinburgh University, NK, 1990. Monograph ECS-LFCS-90-105.
[9] C. Jones, G. Plotkin, A probabilistic powerdomain of evalutions, in: Proceeding of the 4th IEEE Annual Symposium on Logic in Computer

Science, Los Alamitos, CA, 1989, pp. 186–195.
[10] J. Kemeny, J. Snell, Finite Markov Chains, Springer-Verlag, 1983.
[11] E.H. Knill, Conventions for quantum pseudocode, LANL Report LAUR-96-2724, 1996.
[12] K. Kraus, States, Effects and Operations: Fundamental Notions of Quantum Theory, Springer, Berlin, 1983.
[13] A. McIver, C. Morgan, Partial correctness for probabilistic demonic programs, Theoretical Computer Science 266 (2001) 513–541.
[14] A. McIver, C. Morgan, Abstraction, Refinement and Proof for Probabilistic Systems, Springer-Verlag, 2005.
[15] C. Morgan, Proof rules for probabilistic loops, Technical Report PRG-TR-25-95, Programming Research Group, Oxford University, 1995.
[16] C. Morgan, A. McIver, K. Seidel, Probabilistic predicate transformers, ACM Transactions on Programming Languages and Systems 18 (3)

(1996) 325–353.
[17] B. Ömer, A procedural formalism for quantum computing, Master Thesis, Department of Theoretical Physics, Technical University of Vienna.

http://tph.tuwien.ac.at/oemer/qcl.html, 1998.
[18] B. Ömer, Structured quantum programming, Ph.D. Thesis, Department of Theoretical Physics, Technical University of Vienna, 2003.
[19] J.W. Sanders, P. Zuliani, Quantum programming, Mathematics of Program Construction 1837 (2000) 80–99.
[20] P. Selinger, A brief survey of quantum programming languages, Functional and Logic Programming 2998 (2004) 1–6.
[21] P. Selinger, Towards a quantum programming language, Mathematical Structures in Computer Science 14 (4) (2004) 527–586.
[22] P.W. Shor, Algorithms for quantum computation: Discrete log and factoring, in: Proceedings of the 35th IEEE FOCS, 1994, pp. 124–134.
[23] M. Ying, Y. Feng, Quantum loop programs, 2006. See http://arxiv.org/abs/quant-ph/0605218 (under review).
[24] P. Zuliani, Quantum programming, Ph.D. Thesis, Oxford University, 2001.
[25] P. Zuliani, Non-deterministic quantum programming, in: Proc. QPL 2004, 2004, pp. 179–195.

http://tph.tuwien.ac.at/oemer/qcl.html
http://arxiv.org//http://arxiv:quant-ph/0605218

	Proof rules for the correctness of quantum programs
	Introduction
	Preliminaries
	The syntax and the denotational/weakest precondition semantics
	The weakest liberal precondition semantics
	Proof rules for quantum loops
	Conclusion and further research
	Acknowledgements
	References

